PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrating Automated Drip Irrigation and Organic Matter to Improve Enzymatic Performance and Yield of Water Efficient Chilli in Karst Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Karst landscape, characterised by drought-prone areas, limited water retention and nutrient-poor soils, pose significant challenges for the sustainability of small-scale agricultural systems. This study investigated the impact of smart precision irrigation (SPI) technology, which integrates drip irrigation (DI) and organic fertilisation, on the growth, physiological performance and water use efficiency of chilli plants cultivated in a karst landscape in Gunungkidul District, Yogyakarta, Indonesia. This experiment involved a combination of drip irrigation (D), non-drip irrigation (ND), organic fertiliser (F), and no fertiliser (NF), with a semi-automatically installed SPI system to monitor and adjust soil moisture and watering requirements. The results showed that the combination of drip irrigation and organic fertiliser (D + F) significantly increased plant growth parameters, including plant height, leaf area, and chlorophyll content, and improved physiological traits such as photosynthetic rate, stomatal conductance, and leaf water use efficiency (LWUE). These improvements were attributed to the optimised water distribution and nutrient availability provided by the DI system, which minimised water loss and reduced drought stress, as evidenced by lower proline accumulation and reduced antioxidant enzyme activity in plants. In addition, the D+F treatment resulted in the highest biomass production, fruit yield and water use efficiency, underlining its potential as a sustainable agricultural practice in water scarce karst environments. The study concludes that adopting organic matter irrigation and fertilisation strategies can improve the productivity and resilience of horticultural crops in areas facing similar environmental constraints.
Słowa kluczowe
Rocznik
Strony
175--187
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
autor
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
  • Department of Agribusiness, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
  • Agricultural Instrument Standardisation Agency (BSIP-Yogyakarta), Jl. Stadion Maguwoharjo No 22, Special Region of Yogyakarta, 55584 Indonesia
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
  • Undergraduate Program in Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
  • Undergraduate Program in Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
  • Undergraduate Program in Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Jl. Nangka II, Maguwoharjo, Special Region of Yogyakarta, 55283 Indonesia
Bibliografia
  • 1. Abdelkhalik, A., Pascual-Seva, N., Nájera, I., Giner, A., Baixauli, C., Pascual, B. 2019. Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agricultural Water Management, 212, 99–110. https://doi.org/10.1016/j.agwat.2018.08.044
  • 2. Aebi, H. 1974. Catalase. In Methods of Enzymatic Analysis, 673–684. Elsevier. https://doi.org/10.1016/B978-0-12-091302-2.50032-3
  • 3. Akkamiş, M., Caliskan, S. 2023. Effects of different irrigation levels and nitrogen fertilization on some physiological characteristics of potato. Research Square. https://doi.org/10.21203/rs.3.rs-3057937/v1
  • 4. Bączek-Kwinta, R., Janowiak, F., Simlat, M., Antonkiewicz, J. 2023. Involvement of dynamic adjustment of ABA, proline and sugar levels in rhizomes in effective acclimation of solidago gigantea to contrasting weather and soil conditions in the country of invasion. International Journal of Molecular Sciences, 24(20), 15368. https://doi.org/10.3390/ijms242015368
  • 5. Bhadha, J.H., Capasso, J.M., Khatiwada, R., Swanson, S., LaBorde, C. 2017. Raising soil organic matter content to improve water holding capacity. EDIS, 2017(5). https://doi.org/10.32473/edis-ss661-2017
  • 6. Bhattarai, S.P., Midmore, D.J., Pendergast, L. 2008. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrigation Science, 26(5), 439–450. https://doi.org/10.1007/s00271-008-0112-5
  • 7. Cui, J., Mak-Mensah, E., Wang, J., Li, Q., Huang, L., Song, S., Zhi, K., Zhang, J. 2024. Interactive Effects of Drip Irrigation and Nitrogen Fertilization on Wheat and Maize Yield: A Meta-analysis. Journal of Soil Science and Plant Nutrition, 24(2), 1547–1559. https://doi.org/10.1007/s42729-024-01650-y
  • 8. Dai, Z., Zhao, X., Yan, H., Qin, L., Niu, X., Zhao, L., Cai, Y. 2022. Optimizing water and nitrogen management for green pepper (Capsicum annuum L.) under drip irrigation in sub-tropical monsoon climate regions. Agronomy, 13(1), 34. https://doi.org/10.3390/agronomy13010034
  • 9. Gao, R., Duan, Y., Zhang, J., Ren, Y., Li, H., Liu, X., Zhao, P., Jing, Y. 2022. Effects of long-term application of organic manure and chemical fertilizer on soil properties and microbial communities in the agro-pastoral ecotone of North China. Frontiers in Environmental Science, 10, 993973. https://doi.org/10.3389/fenvs.2022.993973
  • 10. Guo, H., Li, S. 2024. A review of drip irrigation’s effect on water, carbon fluxes, and crop growth in farmland. Water, 16(15), 2206. https://doi.org/10.3390/w16152206
  • 11. Handru, A., Sidiq, M.F., Putri, D. 2024. Application of methyl eugenol as a fruit fly (Bactrocera Sp.) control in chilli plants in karst land of Ponjong Village, Gunungkidul, Yogyakarta. Agrisaintifika: Jurnal Ilmu-Ilmu Pertanian, 8(1), 42–48. https://doi.org/10.32585/ags.v8i1.4988
  • 12. Hasanuzzaman, M., Raihan, Md.R.H., Masud, A.A.C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., Fujita, M. 2021. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), 9326. https://doi.org/10.3390/ijms22179326
  • 13. Idrees, S., Hanif, M.A., Ayub, M.A., Hanif, A., Ansari, T.M. 2020. Chili pepper. In Medicinal Plants of South Asia 113–124. Elsevier. https://doi.org/10.1016/B978-0-08-102659-5.00009-4
  • 14. Jomova, K., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Valko, M. 2024. Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98(5), 1323–1367. https://doi.org/10.1007/s00204-024-03696-4
  • 15. Kano-Nakata, M., Inukai, Y., Wade, L.J., Siopongco, J.D.L.C., Yamauchi, A. 2011. Root development, water uptake, and shoot dry matter production under water deficit conditions in two CSSLs of rice: Functional roles of root plasticity. Plant Production Science, 14(4), 307–317. https://doi.org/10.1626/pps.14.307
  • 16. Kou, X., Han, W., Kang, J. 2022. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13, 1085409. https://doi.org/10.3389/fpls.2022.1085409
  • 17. Kumar, A., Dutt, S., Bagler, G., Ahuja, P.S., Kumar, S. 2012. Engineering a thermo-stable superoxide dismutase functional at sub-zero to > 50 °C, which also tolerates autoclaving. Scientific Reports, 2(1), 387. https://doi.org/10.1038/srep00387
  • 18. Li, S.-L., Xu, S., Wang, T.-J., Yue, F.-J., Peng, T., Zhong, J., Wang, L.-C., Chen, J.-A., Wang, S.-J., Chen, X., Liu, C.-Q. 2020. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region. Agriculture, Ecosystems & Environment, 303, 107120. https://doi.org/10.1016/j.agee.2020.107120
  • 19. Ma, S., Meng, Y., Han, Q., Ma, S. 2023. Drip fertilization improve water and nitrogen use efficiency by optimizing root and shoot traits of winter wheat. Frontiers in Plant Science, 14, 1201966. https://doi.org/10.3389/fpls.2023.1201966
  • 20. Ma, X., Sanguinet, K.A., Jacoby, P.W. 2020. Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth. Agricultural Water Management, 231, 105993. https://doi.org/10.1016/j.agwat.2019.105993
  • 21. Mačkić, K., Bajić, I., Pejić, B., Vlajić, S., Adamović, B., Popov, O., Simić, D. 2023. Yield and water use efficiency of drip irrigation of pepper. Water, 15(16), 2891. https://doi.org/10.3390/w15162891
  • 22. M’hamdi, O., Égei, M., Pék, Z., Ilahy, R., Nemeskéri, E., Helyes, L., Takács, S. 2023. Root development monitoring under different water supply levels in processing tomato plants. Plants, 12(20), 3517. https://doi.org/10.3390/plants12203517
  • 23. Mishra, K.B., Mishra, A., Novotná, K., Rapantová, B., Hodaňová, P., Urban, O., Klem, K. 2016. Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. Plant Methods, 12(1), 46. https://doi.org/10.1186/s13007-016-0145-3
  • 24. Noviyanto, A. 2024. Unmanned aerial vehicle technology for quantitative morphometry and geomorphic processes – study case in rotational landslide deposited areas. Ecological Engineering & Environmental Technology, 25(8), 89–95. https://doi.org/10.12912/27197050/189284
  • 25. Onsa, G.H., Bin Saari, N., Selamat, J., Bakar, J. 2004. Purification and characterization of membrane-bound peroxidases from Metroxylon sagu. Food Chemistry, 85(3), 365–376. https://doi.org/10.1016/j.foodchem.2003.07.013
  • 26. Parthasarathi, T., Vanitha, K., Mohandass, S., Vered, E. 2018. Evaluation of drip irrigation system for water productivity and yield of rice. Agronomy Journal, 110(6), 2378–2389. https://doi.org/10.2134/agronj2018.01.0002
  • 27. Reyes-Cabrera, J., Zotarelli, L., Dukes, M.D., Rowland, D.L., Sargent, S.A. 2016. Soil moisture distribution under drip irrigation and seepage for potato production. Agricultural Water Management, 169, 183–192. https://doi.org/10.1016/j.agwat.2016.03.001
  • 28. Rouphael, Y., Cardarelli, M., Schwarz, D., Franken, P., Colla, G. 2012. Effects of drought on nutrient uptake and assimilation in vegetable crops. In R. Aroca (Ed.), Plant Responses to Drought Stress (pp. 171–195). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_7
  • 29. Sakoda, K., Yamori, W., Groszmann, M., Evans, J.R. 2021. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiology, 185(1), 146–160. https://doi.org/10.1093/plphys/kiaa011
  • 30. Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H., Battaglia, M.L. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. https://doi.org/10.3390/plants10020259
  • 31. Siddiqi, K.S., Husen, A. 2016. Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters, 11(1), 400. https://doi.org/10.1186/s11671-016-1607-2
  • 32. Slamini, M., Sbaa, M., Arabi, M., Darmous, A. 2022. Review on partial root-zone drying irrigation: Impact on crop yield, soil and water pollution. Agricultural Water Management, 271, 107807. https://doi.org/10.1016/j.agwat.2022.107807
  • 33. Tl, T., Pang, H., Li, Y. 2009. The potential contribution of subsurface drip irrigation to water-saving agriculture in the western USA. Agricultural Sciences in China, 8(7), 850–854. https://doi.org/10.1016/S1671-2927(08)60287-4
  • 34. Touil, S., Richa, A., Fizir, M., Argente García, J.E., Skarmeta Gómez, A.F. 2022. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrigation and Drainage, 71(5), 1396–1416. https://doi.org/10.1002/ird.2735
  • 35. Wang, K., Zhang, C., Chen, H., Yue, Y., Zhang, W., Zhang, M., Qi, X., Fu, Z. 2019. Karst landscapes of China: Patterns, ecosystem processes and services. Landscape Ecology, 34(12), 2743–2763. https://doi.org/10.1007/s10980-019-00912-w
  • 36. Whitehead, D., Barbour, M.M., Griffin, K.L., Turnbull, M.H., Tissue, D.T. 2011. Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. Cliffortiodes). Tree Physiology, 31(9), 985–996. https://doi.org/10.1093/treephys/tpr021
  • 37. Zamljen, T., Zupanc, V., Slatnar, A. 2020. Influence of irrigation on yield and primary and secondary metabolites in two chilies species, Capsicum annuum L. and Capsicum chinense Jacq. Agricultural Water Management, 234, 106104. https://doi.org/10.1016/j.agwat.2020.106104
  • 38. Zhang, S., Rasool, G., Wang, S., Guo, X., Zhao, Z., Zhang, Y., Wei, Z., Xia, Q. 2024. Effect of irrigation and cultivation modes on growth, physiology, rice yield parameters and water footprints. Agronomy, 14(8), 1747. https://doi.org/10.3390/agronomy14081747
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ffe58b1-cb88-4df6-b7a0-a49752d30d33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.