PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced Adsorption of Methylene Blue dye using Groundnut Shell Activated Nanocarbon: A Sustainable Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, activated nanocarbon derived from lignocellulose-rich groundnut shells was synthesized by KOH impregnation to enhance surface area and porosity, resulting in Groundnut Shell Activated Nanocarbon (GSANC) and thoroughly characterized for its porosity, particle size, crystallinity, combustion profile, functional groups, and surface morphology. It exhibited a type I N2 adsorption-desorption isotherm with an H4 hysteresis loop, indicative of a mix of micro and mesopores, with a high specific surface area of 665.80 m² g-1 and an average pore diameter of 2.97 nm. This nanoparticulate activated carbon exhibited exceptional performance in methylene blue (MB) dye adsorption, achieving a maximum adsorption capacity (qmax) of 212.76 mg g-1. The adsorption mechanisms included electrostatic interactions, π-π stacking, and hydrogen bonding, contributing significantly to its efficacy as an adsorbent highlighting its potential for applications in wastewater treatment.
Słowa kluczowe
Rocznik
Tom
Strony
728--744
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • Department of Renewable Energy Engineering, Agricultural Engineering College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
  • Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
Bibliografia
  • Al-Othman, Z.A., Ali, R., Naushad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chemical engineering journal, 184, 238-247. https://doi.org/https://doi.org/10.1016/j.cej.2012.01.048
  • Benkhaya, S., M’rabet, S., Lgaz, H., El Bachiri, A., El Harfi, A. (2022). Dyes: classification, pollution, and environmental effects. Dye biodegradation, mechanisms and techniques: Recent advances, 1-50. https://doi.org/https://doi.org/10.1007/978-981-16-5932-4_1
  • Bulut, Y., Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1-3), 259-267. https://doi.org/https://doi.org/10.1016/j.desal.2005.10.032
  • EBC, I. (2012). Comparison of European biochar certificate version 4. 8 and IBI biochar standards version 2.0 European Biochar Certificate first publication March 2012b. www. european-biochar. org/en/home IBI Biochar Stand first Publ May.
  • Eldeeb, T.M., Aigbe, U.O., Ukhurebor, K.E., Onyancha, R.B., El-Nemr, M.A., Hassaan, M.A., Ragab, S., Osibote, O.A., El Nemr, A. (2024). Adsorption of methylene blue (MB) dye on ozone, purified and sonicated sawdust biochars. Biomass Conversion and Biorefinery, 14(8), 9361-9383. https://doi.org/https://doi.org/10.1007/s13399-022-03015-w
  • Georgin, J., Dotto, G L., Mazutti, M.A., Foletto, E.L. (2016). Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions. Journal of Environmental Chemical Engineering, 4(1), 266-275. https://doi.org/https://doi.org/10.1016/j.jece.2015.11.018
  • Guo, S., Zou, Z., Chen, Y., Long, X., Liu, M., Li, X., Tan, J., Chen, R. (2023). Synergistic effect of hydrogen bonding and π-π interaction for enhanced adsorption of rhodamine B from water using corn straw biochar. Environmental Pollution, 320, 121060. https://doi.org/https://doi.org/10.1016/j.envpol.2023.121060
  • Hashemi, S.H., Kaykhaii, M. (2022). Azo dyes: sources, occurrence, toxicity, sampling, analysis, and their removal methods. In Emerging freshwater pollutants (pp. 267-287). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822850-0.00013-2
  • Ho, Y.-S., McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34(5), 451-465.
  • Hou, J., Liu, Y., Wen, S., Li, W., Liao, R., Wang, L. (2020). Sorghum-waste-derived high-surface area KOH-activated porous carbon for highly efficient methylene blue and Pb (II) removal. ACS omega, 5(23), 13548-13556. https://doi.org/https://doi.org/10.1021/acsomega.9b04452
  • IBI. (2015). Specification Standards: Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards) https://biochar-international.org/wp-content/uploads/2023/01/IBI_Biochar_Standards_V2.1_Final.pdf
  • Ibrahim, T., Moctar, B.L., Tomkouani, K., Gbandi, D.-B., Victor, D.K., Phinthè, N. (2014). Kinetics of the adsorption of anionic and cationic dyes in aqueous solution by low-cost activated carbons prepared from sea cake and cotton cake. Am. Chem. Sci. J, 4(1), 38-57.
  • Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A.R., Pullammanappallil, P., Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource technology, 110, 50-56. https://doi.org/https://doi.org/10.1016/j.biortech.2012.01.072
  • Jawad, A.H., Abdulhameed, A.S. (2020). Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecology and Environment, 5(6), 456-469. https://doi.org/https://doi.org/10.1007/s40974-020-00177-z
  • Jawad, A.H., Abdulhameed, A.S., Bahrudin, N.N., Hum, N.N.M.F., Surip, S., Syed-Hassan, S.S.A., Yousif, E., Sabar, S. (2021). Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption. Water Science and Technology, 84(8), 1858-1872. https://doi.org/https://doi.org/10.2166/wst.2021.355
  • Jawad, A.H., Abdulhameed, A.S., Wilson, L.D., Syed-Hassan, S.S.A., ALOthman, Z.A., Khan, M.R. (2021). High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: optimization and mechanism study. Chinese Journal of Chemical Engineering, 32, 281-290. https://doi.org/https://doi.org/10.1016/j.cjche.2020.09.070
  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American chemical society, 38(11), 2221-2295. https://doi.org/https://doi.org/10.1021/ja02268a002
  • Lian, F., Xing, B., Zhu, L. (2011). Comparative study on composition, structure, and adsorption behavior of activated carbons derived from different synthetic waste polymers. Journal of colloid and interface science, 360(2), 725-730. https://doi.org/https://doi.org/10.1016/j.jcis.2011.04.103
  • Liu, Y., Guo, Y., Gao, W., Wang, Z., Ma, Y., Wang, Z. (2012). Simultaneous preparation of silica and activated carbon from rice husk ash. Journal of Cleaner Production, 32, 204-209. https://doi.org/https://doi.org/10.1016/j.jclepro.2012.03.021
  • Nam, H., Wang, S., Jeong, H.-R. (2018). TMA and H2S gas removals using metal loaded on rice husk activated carbon for indoor air purification. Fuel, 213, 186-194. https://doi.org/https://doi.org/10.1016/j.fuel.2017.10.089
  • Salimi, A., Roosta, A. (2019). Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochimica Acta, 675, 134-139. https://doi.org/https://doi.org/10.1016/j.tca.2019.03.024
  • Sawalha, H., Bader, A., Sarsour, J., Al-Jabari, M., Rene, E.R. (2022). Removal of dye (methylene blue) from wastewater using bio-char derived from agricultural residues in palestine: Performance and isotherm analysis. Processes, 10(10), 2039. https://doi.org/https://doi.org/10.3390/pr10102039
  • Sen, T.K. (2023). Adsorptive removal of dye (methylene blue) organic pollutant from water by pine tree leaf biomass adsorbent. Processes, 11(7), 1877. https://doi.org/https://doi.org/10.3390/pr11071877
  • Senthilkumaar, S., Varadarajan, P., Porkodi, K., Subbhuraam, C. (2005). Adsorption of methylene blue onto jute fiber carbon: kinetics and equilibrium studies. Journal of colloid and interface science, 284(1), 78-82. https://doi.org/https://doi.org/10.1016/j.jcis.2004.09.027
  • Shan, R., Shi, Y., Gu, J., Wang, Y., Yuan, H. (2020). Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chinese Journal of Chemical Engineering, 28(5), 1375-1383. https://doi.org/https://doi.org/10.1016/j.cjche.2020.02.012
  • Sing, K.S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619. https://doi.org/https://doi.org/10.1351/pac198557040603
  • Supong, A., Bhomick, P.C., Baruah, M., Pongener, C., Sinha, U.B., Sinha, D. (2019). Adsorptive removal of Bisphenol A by biomass activated carbon and insights into the adsorption mechanism through density functional theory calculations. Sustainable Chemistry and Pharmacy, 13, 100159. https://doi.org/https://doi.org/10.1016/j.scp.2019.100159
  • Temkin, M.J., Pyzhev, V. (1940). Recent modifications to Langmuir isotherms.
  • Theydan, S.K., Ahmed, M.J. (2012). Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. Journal of Analytical and Applied Pyrolysis, 97, 116-122. https://doi.org/https://doi.org/10.1016/j.jaap.2012.05.008
  • Tsade Kara, H., Anshebo, S.T., Sabir, F.K., Adam Workineh, G. (2021). Removal of methylene blue dye from wastewater using periodiated modified nanocellulose. International Journal of Chemical Engineering, 2021(1), 9965452. https://doi.org/https://doi.org/10.1155/2021/9965452
  • Uchimiya, M., Klasson, K.T., Wartelle, L.H., Lima, I.M. (2011). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere, 82(10), 1431-1437. https://doi.org/https://doi.org/10.1016/j.chemosphere.2010.11.050
  • Wang, B., Qiu, J., Feng, H., Sakai, E., Komiyama, T. (2016). KOH-activated nitrogen doped porous carbon nanowires with superior performance in supercapacitors. Electrochimica Acta, 190, 229-239. https://doi.org/https://doi.org/10.1016/j.electacta.2016.01.038
  • Weber, G. (1995). van't Hoff revisited: enthalpy of association of protein subunits. The Journal of Physical Chemistry, 99(3), 1052-1059. https://doi.org/https://doi.org/10.1021/j100003a031
  • Xing, S., Hu, C., Qu, J., He, H., Yang, M. (2008). Characterization and reactivity of MnO x supported on mesoporous zirconia for herbicide 2, 4-D mineralization with ozone. Environmental science & technology, 42(9), 3363-3368. https://doi.org/https://doi.org/10.1021/es0718671
  • Xu, Z., Chen, J., Zhang, X., Song, Q., Wu, J., Ding, L., Zhang, C., Zhu, H., Cui, H. (2019). Template-free preparation of nitrogen-doped activated carbon with porous architecture for high-performance supercapacitors. Microporous and Mesoporous Materials, 276, 280-291. https://doi.org/https://doi.org/10.1016/j.micromeso.2018.09.023
  • Zhou, Y., Zhang, L., Cheng, Z. (2015). Removal of organic pollutants from aqueous solution using agricultural wastes: a review. Journal of Molecular Liquids, 212, 739-762. https://doi.org/https://doi.org/10.1016/j.molliq.2015.10.023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ffde97f-1ba2-4ab2-9d97-4169eded6d4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.