PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A set of ultrasonic burnishing equipment with two different burnishing tips was designed and manufactured, with which a series of experiments were performed to explore the effects of process parameters and burnishing tips on the surface integrity of austenitic stainless steel material being treated by ultrasonic burnishing (UB). Based on the experiment data, the two surface treatments, i.e. UB with ball tip and UB with roller tip, were comparatively assessed together with the other two surface machining methods of fine turning and grinding. As a further study, a microscopic FE model was built to investigate the three-dimensional transient stress and strain field inside the being treated material. It was found that parameter combination is determinative to surface finishing in UB process, and static pressure and burnishing pass are supposed to be the two most significant parameters for surface integrity of the treated sample. On the whole, roller tip is more preferable to achieve good surface enhancement than ball tip. The superposition of ultrasonic vibration leads to the dynamic change of the stress and strain field in UB, resulting in the oscillating propagation of stress wave inside the material, which gives explanation for the good performance of UB than that of conventional burnishing without ultrasonic.
Rocznik
Strony
224--240
Opis fizyczny
Bibliogr. 43 poz., fot., rys., wykr.
Twórcy
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan 250353, Shandong Province, People’s Republic of China
  • Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 East Jingshi Road, Jinan 250103, Shandong Province, People’s Republic of China
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan 250353, Shandong Province, People’s Republic of China
  • Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), No. 28789 East Jingshi Road, Jinan 250103, Shandong Province, People’s Republic of China
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan 250353, Shandong Province, People’s Republic of China
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan 250353, Shandong Province, People’s Republic of China
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan 250353, Shandong Province, People’s Republic of China
autor
  • School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), No. 3501 Daxue Road, Jinan 250353, Shandong Province, People’s Republic of China
Bibliografia
  • [1] Nalbant M, Yildiz Y. Effect of cryogenic cooling in milling process of AISI 304 stainless steel. Trans Nonferrous Meter Soc China (Engl Ed). 2011;21:72–9. https ://doi.org/10.1016/S1003-6326(11)60680 -8.
  • [2] Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach. J Mater Sci Technol. 1999;15:193–7.
  • [3] Wu J, Zou S, Zhang Y, Gong S, Sun G, Ni Z, Cao Z, Che Z, Feng A. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening. Surf Coatings Technol. 2017;328:283–91. https ://doi.org/10.1016/j.surfc oat.2017.08.069.
  • [4] Bin Tang C, Xin Liu D, Tang B, Hua Zhang X, Qin L, Song Liu C. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy. Appl Surf Sci. 2016;390:946–58. https ://doi.org/10.1016/j.apsus c.2016.08.146.
  • [5] Mizunuma S, Iizuka T, Mitsui K, Okumura H, Kohzu M. Grain refinement of magnesium alloy AZ31 under torsion extrusion with a square-hole die. Mater Sci Forum. 2010;654–656:711–4. https://doi.org/10.4028/www.scien tific .net/MSF.654-656.711.
  • [6] Jahedi M, Paydar MH. Study on the feasibility of the torsion extrusion (TE) process as a severe plastic deformation method for consolidation of Al powder. Mater Sci Eng A. 2010;527:5273–9. https://doi.org/10.1016/j.msea.2010.04.088.
  • [7] Pu Z, Yang S, Song GL, Dillon OW, Puleo DA, Jawahir IS. Ultrafine-grained surface layer on Mg–Al–Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scr Mater. 2011;65:520–3. https ://doi.org/10.1016/j.scrip tamat.2011.06.013.
  • [8] Low KO, Wong KJ. Influence of ball burnishing on surface quality and tribological characteristics of polymers under dry sliding conditions. Tribol Int. 2011;44:144–53. https ://doi.org/10.1016/j.tribo int.2010.10.005.
  • [9] Joo SH, Kim HS. Comparison of deformation and microstructural evolution between equal channel angular pressing and forward extrusion using the dislocation cell mechanism-based finite element method. J Mater Sci. 2010;45:4705–10. https ://doi.org/10.1007/s1085 3-010-4465-9.
  • [10] Chen H, Tang J, Lang X, Huang Y, He Y. Influences of dressing lead on surface roughness of ultrasonic-assisted grinding. Int J Adv Manuf Technol. 2014;71:2011–5. https ://doi.org/10.1007/s0017 0-014-5636-7.
  • [11] Li K, He Y, Cho IS, Shin K. Effect of ultrasonic nanocrytalline surface modification on hardness and microstructural evolution of Cu–Sn alloy. Defect Diffus Forum. 2015;364:157–64. https ://doi.org/10.4028/www.scien tific .net/DDF.364.157.
  • [12] Dong Z, Liu Z, Li M, Luo JL, Chen W, Zheng W, Guzonas D. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water. J Nucl Mater. 2015;457:266–72. https://doi.org/10.1016/j.jnucm at.2014.11.028.
  • [13] Qinjian Z, Jianguo C, Huiying W. Ultrasonic Surface Strengthening of train axle material 30CrMoA. Procedia CIRP. 2016;42:853–7. https ://doi.org/10.1016/j.proci r.2016.03.007.
  • [14] Amanov A, Cho IS, Kim DE. Effectiveness of high-frequency ultrasonic peening treatment on the tribological characteristics of Cubased sintered materials on steel substrate. Mater Des. 2013;45:118–24. https ://doi.org/10.1016/j.matde s.2012.08.073.
  • [15] Vilhauer B, Bennett CR, Matamoros AB, Rolfe ST. Fatigue behavior of welded coverplates treated with ultrasonic impact treatment and bolting. Eng Struct. 2012;34:163–72. https ://doi.org/10.1016/j.engstruct.2011.09.009.
  • [16] Yang Z, Qi L, Wang J, Ma Z, Wang Y, Wang D. Effect of ultrasonic impact treatment on the microstructure and mechanical properties of diffusion-bonded TC11 alloy joints. Arch Civ Mech Eng. 2019;19:1431–41. https ://doi.org/10.1016/j.acme.2019.09.006.
  • [17] Wu B, Zhang L, Zhang J, Murakami RI, Pyoun YS. An investigation of ultrasonic nanocrystal surface modification machining process by numerical simulation. Adv Eng Softw. 2015;83:59–69. https ://doi.org/10.1016/j.adven gsoft .2015.01.011.
  • [18] Kayumov R, Sik Pyun Y, Suh CM, Murakami R. Mechanical and fatigue characteristics of Ti-6Al-4V extra low interstitial and solution-treated and annealed alloys after ultrasonic nanocrystal surface modification treatment. J Nanosci Nanotechnol. 2014;14:9430–5. https ://doi.org/10.1166/jnn.2014.10164 .
  • [19] Teimouri R, Amini S, Bami AB. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Meas J Int Meas Confed. 2018;116:129–39. https ://doi.org/10.1016/j.measu remen t.2017.11.001.
  • [20] Liu Y, Zhao X, Wang D. Determination of the plastic properties of materials treated by ultrasonic surface rolling process through instrumented indentation. Mater Sci Eng A. 2014;600:21–31. https ://doi.org/10.1016/j.msea.2014.01.096.
  • [21] Mordyuk BN, Prokopenko GI. Ultrasonic impact peening for the surface properties’ management. J Sound Vib. 2007;308:855–66. https ://doi.org/10.1016/j.jsv.2007.03.054.
  • [22] Liu X, Wu D, Zhang J, Hu X, Cui P. Analysis of surface texturing in radial ultrasonic vibration-assisted turning. J Mater Process Technol. 2019;267:186–95. https ://doi.org/10.1016/j.jmatp rotec .2018.12.021.
  • [23] Bozdana AT, Gindy NNZ. Comparative experimental study on effects of conventional and ultrasonic deep cold rolling processes on Ti–6Al–4V. Mater Sci Technol. 2008;24:1378–84. https ://doi.org/10.1179/17432 8408x 30243 1.
  • [24] Zhang M, Deng J, Liu Z, Zhou Y. Investigation into contributions of static and dynamic loads to compressive residual stress fields caused by ultrasonic surface rolling. Int J Mech Sci. 2019. https ://doi.org/10.1016/j.ijmec sci.2019.10514 4.
  • [25] Cheng M, Zhang D, Chen H, Qin W. Development of ultrasonic thread root rolling technology for prolonging the fatigue performance of high strength thread. J Mater Process Technol. 2014;214:2395–401. https ://doi.org/10.1016/j.jmatp rotec.2014.05.019.
  • [26] Jerez-Mesa R, Travieso-Rodriguez JA, Gomez-Gras G, Lluma-Fuentes J. Development, characterization and test of an ultrasonic vibration-assisted ball burnishing tool. J Mater Process Technol.2018;257:203–12. https ://doi.org/10.1016/j.jmatp rotec .2018.02.036.
  • [27] Travieso-Rodriguez JA, Gomez-Gras G, Dessein G, Carrillo F, Alexis J, Jorba-Peiro J, Aubazac N. Effects of a ball-burnishing process assisted by vibrations in G10380 steel specimens. Int J Adv Manuf Technol. 2015;81:1757–65. https ://doi.org/10.1007/s00170-015-7255-3.
  • [28] Huuki J, Hornborg M, Juntunen J. Influence of ultrasonic burnishing technique on surface quality and change in the dimensions of metal shafts. J Eng (USA). 2014;2014:5–7. https ://doi.org/10.1155/2014/12424 7.
  • [29] Zhao W, Liu D, Zhang X, Zhou Y, Zhang R, Zhang H, Ye C. Improving the fretting and corrosion fatigue performance of 300M ultra-high strength steel using the ultrasonic surface rolling process. Int J Fatigue. 2019;121:30–8. https ://doi.org/10.1016/j.ijfatigue.2018.11.017.
  • [30] Shen X, Gong X, Zhang J, Su G. An investigation of stress condition in vibration-assisted burnishing. Int J Adv Manuf Technol. 2019;105:1189–207. https ://doi.org/10.1007/s0017 0-019-04128 -9.
  • [31] Jerez-Mesa R, Gomez-Gras G, Travieso-Rodriguez JA. Surfach roughness assessment after different strategy patterns of ultrasonic ball burnishing. Procedia Manuf. 2017;13:710–7. https ://doi.org/10.1016/j.promf g.2017.09.116.
  • [32] Bozdana AT, Gindy NNZ, Li H. Deep cold rolling with ultrasonic vibrations-a new mechanical surface enhancement technique. Int J Mach Tools Manuf. 2005;45:713–8. https ://doi.org/10.1016/j.ijmachtool s.2004.09.017.
  • [33] Jinchun S, Zhiqiang JIA, Minxin Z, Engineering M. Influence of ultrasonic rolling and finishing processing parameters on surface roughness and hardness of 45 steel. Manuf Technol Mach Tool. 2016;2016:85–9.
  • [34] Stalin John MR, Vinayagam BK. Investigation of roller burnishing process on aluminium 63400 material. Aust J Mech Eng. 2011;8:47–544. https ://doi.org/10.1080/14484 846.2011.11464 594.
  • [35] Habibnejad-Korayem M, Mahmudi R, Ghasemi HM, Poole WJ. Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles. Wear. 2010;268:405–12. https ://doi.org/10.1016/j.wear.2009.08.031.
  • [36] Amanov A, Umarov R. The effects of ultrasonic nanocrystal surface modification temperature on the mechanical properties and fretting wear resistance of Inconel 690 alloy. Appl Surf Sci. 2018;441:515–29. https ://doi.org/10.1016/j.apsus c.2018.01.293.
  • [37] Nestler A, Schubert A. Effect of machining parameters on surface properties in slide diamond burnishing of aluminium matrix composites. Mater Today Proc. 2015;2:S156–S161161. https ://doi.org/10.1016/j.matpr .2015.05.033.
  • [38] Babu P, Ankamma K, Prasad T. Optimization of burnishing parameters by DOE and surface roughness, microstructure and micro hardness characteristics of AA6061 aluminium alloy in T6 condition. Int J Eng Res Appl. 2012;2:1139–1146. https ://cites eerx.ist.psu.edu/viewd oc/downl oad?doi=10.1.1.416.8697&rep=rep1&type=pdf.Accessed 3 Nov 2019.
  • [39] Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–22. https ://doi.org/10.1038/nmat3 115.
  • [40] Warren AW, Guo YB. The impact of surface integrity by hard turning versus grinding on rolling contact fatigue-part I: comparison of fatigue life and acoustic emission signals. Fatigue Fract Eng Mater Struct. 2007;30:698–711. https ://doi.org/10.1111/j.1460-2695.2007.01144 .x.
  • [41] Liu Y, Wang L, Wang D. Finite element modeling of ultrasonic surface rolling process. J Mater Process Technol. 2011;211:2106–13. https ://doi.org/10.1016/j.jmatp rotec .2011.07.009.
  • [42] Lee CS, Park IG, Pyoun YS, Cho IS, Cho IH, Park J. Rolling contact fatigue characteristics of SAE52100 by ultrasonic nanocrystal surface modification technology. Int J Mod Phys B. 2010;24:3065–70. https ://doi.org/10.1142/S0217 97921 00660 94.
  • [43] Teimouri R, Amini S. Analytical modeling of ultrasonic surface burnishing process: Evaluation of through depth localized strain.Int J Mech Sci. 2019;151:118–32. https ://doi.org/10.1016/j.ijmecsci.2018.11.008.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ff6990d-959f-4257-831b-4a68fb20a9e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.