PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of mining and geology on mining-induced seismicity – a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mining-induced seismicity is a commonly occurring phenomenon in underground mines. This poses a greater challenge to the safety of the mining operation. This paper presents a case study of the Young-Davidson mine in northern Ontario, Canada, where seismic events of magnitude Mn 2.0+ have been observed at mining depths of 600 to 800 m below the surface. The occurrence of large seismic events at such shallow depths is the key issue of this study. A comprehensive study of the microseismic database has been conducted to discern the root causes for the unusually strong seismic activities recorded at shallow depths. The effects of mining activities in the vicinity of two dykes intersecting the orebody on the seismic response are investigated. Variation of the b-value derived from the magnitude-frequency distribution is examined, and moment tensor inversion for three large seismic events is carried out to determine the source mechanisms. It is shown from this investigation that the influence of the sill pillar is more critical, leading to high mining-induced stress and the occurrence of large events. While the findings from this research are specific to this case study, they could be used to shed light on the causes of induced seismicity at other mines with similar conditions.
Rocznik
Strony
200--215
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
  • McGill University, Department of Mining and Materials Engineering, Canada
autor
  • McGill University, Department of Mining and Materials Engineering, Canada
autor
  • Alamos Gold Inc., Ontario, Canada
autor
  • McGill University, Department of Mining and Materials Engineering, Canada
Bibliografia
  • [1] Li T, Cai MF, Cai M. A review of mining-induced seismicity in China. Int J Rock Mech Min Sci 2007 Dec 1;44(8):1149-71. https://doi.org/10.1016/j.ijrmms.2007.06.002.
  • [2] He S, Chen T, Vennes I, He X, Song D, Chen J, et al. Dynamic modelling of seismic wave propagation due to a remote seismic source: a case study. Rock Mech Rock Eng 2020 Nov; 53(11):5177-201.
  • [3] Brown LG, Hudyma MR. Mining induced seismicity in Canada: a 2017 update. In: 52nd US rock mechanics/geomechanics symposium. OnePetro; 2018 Jun 17.
  • [4] Lovchikov AV. Review of the strongest rockbursts and mining-induced earthquakes in Russia. J Min Sci 2013 Jul; 49(4):572-5.
  • [5] Zhou XP, Qian QH, Yang HQ. Rock burst of deep circular tunnels surrounded by weakened rock mass with cracks. Theor Appl Fract Mech 2011 Oct 1;56(2):79-88. https://doi.org/10.1016/j.tafmec.2011.10.003.
  • [6] Blake W, Hedley DG. Rockbursts: case studies from North American hard-rock mines. SME; 2003.
  • [7] Ilieva M, Rudziński Ł, Pawłuszek-Filipiak K, Lizurek G, Kudłacik I, Tondaś D, et al. Combined study of a significant mine collapse based on seismological and geodetic datad29 January 2019, Rudna Mine, Poland. Rem Sens 2020 Jan; 12(10):1570. https://doi.org/10.3390/rs12101570.
  • [8] Si G, Cai W, Wang S, Li X. Prediction of relatively high-energy seismic events using spatial-temporal parametrisation of mining-induced seismicity. Rock Mech Rock Eng 2020 Nov;53(11):5111-32.
  • [9] He S, Song D, Mitri H, He X, Chen J, Li Z, et al. Integrated rockburst early warning model based on fuzzy comprehensive evaluation method. Int J Rock Mech Min Sci 2021 Jun 1; 142:104767.
  • [10] Lurka A. Spatio-temporal hierarchical cluster analysis of mining-induced seismicity in coal mines using Ward's minimum variance method. J Appl Geophys 2021 Jan 1;184: 104249.
  • [11] He S, Chen T, Song D, He X, Chen J, Li Z, et al. A new methodology for the simulation of tunnel rockburst due to far-field seismic event. J Appl Geophys 2022 Jul 1;202:104651.
  • [12] Wang J, Apel DB, Pu Y, Hall R, Wei C, Sepehri M. Numerical modeling for rockbursts: a state-of-the-art review. J Rock Mech Geotech Eng 2021 Apr 1;13(2):457-78.
  • [13] Gibowicz SJ, Kijko A. An introduction to mining seismology. Int Geophys Ser 1994;55. I-x.
  • [14] Holub K. Predisposition to induced seismicity in some Czech coal mines. In: Seismicity Associated with Mines, Reservoirs and Fluid Injections. Basel: Birkhäuser; 1997. p. 435-50. https://doi.org/10.1007/s000240050086.
  • [15] Brown LG. Quantification of seismic responses to mining using novel seismic response parameters (Doctoral disser tation. Laurentian University of Sudbury); 2018.
  • [16] Leake MR, Conrad WJ, Westman EC, Afrouz SG, Molka RJ. Microseismic monitoring and analysis of induced seismicity source mechanisms in a retreating room and pillar coal mine in the Eastern United States. Undergr Space 2017 Jun 1;2(2): 115-24. https://doi.org/10.1016/j.undsp.2017.05.002.
  • [17] Gutenberg B, Richter CF. Frequency of earthquakes in Cal ifornia. Bull Seismol Soc Am 1944;34(4):185-8.
  • [18] Hudyma MR. Analysis and interpretation of clusters of seismic events in mines. University of Western Australia; 2008 Nov.
  • [19] Yu Q, Zhao D, Xia Y, Jin S, Zheng J, Meng Q, et al. Multivariate early warning method for rockburst monitoring based on microseismic activity characteristics. Front Earth Sci 2022 Jan 25:19. https://doi.org/10.3389/feart.2022.837333.
  • [20] Xu NW, Dai F, Zhou Z. Study of characteristics of b value for microseismic events in high rock slope. Chin J Rock Mech Eng 2014;33(S1):3368-74.
  • [21] Legge NB, Spottiswoode SM. Fracturing and microseismicity ahead of a deep gold mine stope in the pre-remnant and remnant stages of mining. In: 6th ISRM Congress. OnePetro; 1987 Aug 30.
  • [22] Hudyma MR. Seismicity at Brunswick mining. In Proceedings quebec mining association ground control colloque. Quebec: Val D’Or; 1995.
  • [23] Cronin V. A draft primer on focal mechanism solutions for geologists. Texas. Baylor University; 2004. p. 14.
  • [24] Ma J, Dong L, Zhao G, Li X. Focal mechanism of mining-induced seismicity in fault zones: a case study of yongshaba mine in China. Rock Mech 2019 Sep;52(9):3341-52. https://doi.org/10.1007/s00603-019-01761-4.
  • [25] Dahm T, Krüger F. Moment tensor inversion and moment tensor interpretation. InNew Manual of Seismological Observatory Practice vol. 2 (NMSOP-2) 2014 (pp. 1-37). Deutsches GeoForschungsZentrum GFZ. DOI:10.2312/ GFZ.NMSOP-2_IS_3.9
  • [26] Eyre ST, Van Der Baan M. Introduction to moment tensor inversion of microseismic events. GeoConvention 2015 May. https://doi.org/10.1190/tl-34080882.1.
  • [27] Julian BR, Miller AD, Foulger GR. Non-double-couple earthquakes 1. Theory. Rev Geophys 1998 Nov;36(4):525-49. https://doi.org/10.1029/98RG00716.
  • [28] Šílený J, Milev A. Source mechanism of mining induced seismic events-resolution of double couple and non-double couple models. Tectonophysics 2008 Aug 1;456(1-2):3-15. https://doi.org/10.1016/j.tecto.2006.09.021.
  • [29] Knopoff L, Randall MJ. The compensated linear-vector dipole: a possible mechanism for deep earthquakes. J Geophys Res 1970 Sep 10;75(26):4957-63. https://doi.org/10.1029/JB075i026p04957.
  • [30] Vavryčuk V. Moment tensor decompositions revisited. J Seismol 2015 Jan;19(1):231-52. https://doi.org/10.1007/ s10950-014-9463-y.
  • [31] Tape W, Tape C. A geometric setting for moment tensors. Geophys J Int 2012 Jul 1;190(1):476-98. https://doi.org/10.1111/j.1365-246X.2012.05491.x.
  • [32] Malovichko D, van Aswegen G, Clark R. Mechanisms of large seismic events in platinum mines of the Bushveld Complex (South Africa). J S Afr Inst Min Metall 2012 Jun; 112(6):419-29.
  • [33] Lay T, Wallace TC. Modern global seismology. Elsevier; 1995 May 18.
  • [34] Eaton DW. Microseismic focal mechanisms: a tutorial, vol. 20. Calgary, Alberta: CREWES Research Report; 2008. p. 1. 1.
  • [35] Krieger L, Heimann S. MoPaDdmoment tensor plotting and decomposition: a tool for graphical and numerical analysis of seismic moment tensors. Seismol Res Lett 2012 May 1;83(3): 589-95. https://doi.org/10.1785/gssrl.83.3.589.
  • [36] Tierney S. Moment tensors - a practical guide, blog post, 2019. Perth, Western Australia: Australian Centre for Geomechanics, The University of Western Australia; 2015. Figure generated by Harris, PH & Wesseloo, J, mXrap soft- ware, version 5, https://mxrap.com/moment-tensors-a-practical-guide. https://mxrap.com.
  • [37] Hudson JA, Pearce RG, Rogers RM. Source type plot for inversion of the moment tensor. J Geophys Res Solid Earth 1989 Jan 10;94(B1):765-74. https://doi.org/10.1029/JB094iB01p00765.
  • [38] Alamos Gold Inc. Mines and projects. Retrieved September 14th, 2015, from Alamos Gold: http://www.alamosgold.com/mines-and-projects/producing-mine/Young-Davidson/.
  • [39] Alamos Gold Inc. Seismic risk management plan. 2021.
  • [40] Kwiatek G, Martínez-Garzón P, Bohnhoff M. HybridMT: a MATLAB/shell environment package for seismic moment tensor inversion and refinement. Seismol Res Lett 2016 Jul 1; 87(4):964-76. https://doi.org/10.1785/0220150251.
  • [41] Ren Y, Vavryčuk V, Wu S, Gao Y. Accurate moment tensor inversion of acoustic emissions and its application to Brazilian splitting test. Int J Rock Mech Min Sci 2021 May 1;141:104707. https://doi.org/10.1016/j.ijrmms.2021.104707.
  • [42] Sellers EJ, Kataka MO, Linzer LM. Source parameters of acoustic emission events and scaling with mining-induced seismicity. J Geophys Res Solid Earth 2003 Sep;108(B9). https://doi.org/10.1029/2001JB000670.
  • [43] Alamos Gold Inc. Ground control management plan. 2020.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ff417dd-a1af-498c-96d8-1919f9d27948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.