Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO₂ media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO₂ laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO₂ laser employing a whole spectrum of CO₂ technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO₂ laser technology and the requirements for multi-kiloWatt CO₂ laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO₂ lasers.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
345--354
Opis fizyczny
Bibliogr. 89 poz., wykr.
Twórcy
autor
- Gigaphoton Inc, 3-25-1 Shinomiya, Hiratsuka, 254-8555, Japan
autor
- Gigaphoton Inc, 3-25-1 Shinomiya, Hiratsuka, 254-8555, Japan
autor
- Gigaphoton Inc, 3-25-1 Shinomiya, Hiratsuka, 254-8555, Japan
autor
- Gigaphoton Inc, 3-25-1 Shinomiya, Hiratsuka, 254-8555, Japan
autor
- Gigaphoton Inc, 3-25-1 Shinomiya, Hiratsuka, 254-8555, Japan
autor
- Gigaphoton Inc, 3-25-1 Shinomiya, Hiratsuka, 254-8555, Japan
autor
- Waseda University, Research Institute for Science and Engineering, Okubo 3-4-1, Shinjuku, Tokyo, 169-8555, Japan
Bibliografia
- 1. J. Henry, E. Spiller, and M. Weisskopf, “Imaging performance of a normal incidence X-ray telescope measured at 0.18 keV”, Proc. SPIE 316, 166 (1981).
- 2. J. Underwood and T. Barbee, “Soft X-ray imaging with a normal incidence mirror”, Nature 294, 429-431 (1981).
- 3. H. Kinoshita, T. Kaneko, H. Takei, N. Takeuchi, and S. Ishihara, “Study on X-ray reduction projection lithography”, presented at 47th Autumn Meeting Japan Society of Applied Physics, Paper No. 28-ZF-15, 1986.
- 4. J. E. Bjorkholm, J. Bokor, L. Eichner, R. R. Freeman, J. Gregus, T. E. Jewell, W. M. Mansfield, A. A. MacDowell, E. L. Raab, W. T. Silfvast, L. H. Szeto, D. M. Tennant, W. K. Waskiewicz, D. L. White, D. L. Windt, O. R. Wood, and J. H. Bruning, “Reduction imaging at 14 nm using multilayer-coated optics: Printing of features smaller than 0.1 μm”, J. Vac. Sci. Technol. B8, 1509-1513 (1990).
- 5. V. Bakshi, EUV Lithography 178, SPIE Press, 2009.
- 6. D. Attwood, Soft X-rays And Extreme Ultraviolet Radiation: Principles And Applications, Cambridge University Press, 2000.
- 7. G. Vaschenko, F. Brizuela, C. Brewer, M. Grisham, H. Mancini, C. S. Menoni, M. C. Marconi, J. J. Rocca, W. Chao, J. A. Liddle, E. H. Anderson, D. T. Attwood, A. V. Vinogradov, I. A. Artioukov, Y. P. Pershyn, and V. V. Kondratenko, “Nanoimaging with a compact extreme-ultraviolet laser”, Opt. Lett. 30, 2095-2097 (2005).
- 8. T. Ejima, F. Ishida, H. Murata, M. Toyoda, T. Harada, T. Tsuru, T. Hatano, M. Yanagihara, M. Yamamoto, and H. Mizutani, “High throughput and wide field of view EUV microscope for blur-free one-shot imaging of living organisms”, Opt. Express 18, 7203-7209 (2010).
- 9. S. Herbert, A. Maryasov, L. Juschkin, R. Lebert, and K. Bergmann, “Defect inspection with an EUV microscope”, Proc. SPIE 7545, 75450O (2010).
- 10. P. W. Wachulak, A. Bartnik, H. Fiedorowicz, and J. Kostecki, “A 50 nm spatial resolution EUV imaging-resolution dependence on object thickness and illumination bandwidth”, Opt. Express 19, 9541-9550 (2011).
- 11. L. Juschkin, “Imaging with plasma based extreme ultraviolet sources”, Proc. SPIE 8678, 86780F-86780F (2012).
- 12. L. Juha, J. Krasa, A. Prag, A. Cejnarova, D. Chvostova, K. Rohlena, K. Jungwirth, J. Kravarik, P. Kubeš, Y. L. Bakshaev, A. S. Chernenko, V. D. Korolev, V. I. Tumanov, M. I. Tumanov, A. Bernardinello, J. Ullschmied, and F. P. Boody, “Ablation of poly (methyl methacrylate) by a single pulse of soft X-rays emitted from Z-pinch and laser-produced plasmas”, Surf. Rev. Lett. 9, 347-352 (2002).
- 13. A. Bartnik, H. Fiedorowicz, R. Jarocki, L. Juha, J. Kostecki, R. Rakowski, and M. Szczurek, “Micromachining of organic polymers by X-ray photo-etching using a 10Hz laser-plasma radiation source”, Microelectron. Eng. 78, 452-456 (2005).
- 14. T. Makimura, S. Uchida, K. Murakami, and H. Niino, “Silica nanomachining using laser plasma soft X rays”, Appl. Phys. Lett. 89, 101118-101118 (2006).
- 15. F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly (methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source”, J. Appl. Phys. 101, 124908-124908 (2007).
- 16. S. Eliezer and K. Mima, Applications of Laser-Plasma Interactions, CRC Press Taylor & Francis Group, 2009.
- 17. S. Torii, T. Makimura, K. Okazaki, D. Nakamura, A. Takahashi, T. Okada, H. Niino, and K. Murakami, “Direct etching of poly (methyl methacrylate) using laser plasma soft x-rays”, Appl. Phys. Exp. 3, 6502 (2010).
- 18. B. Reisinger, M. Fahrner, I. Frischauf, S. Yakunin, V. Svorcik, H. Fiedorowicz, A. Bartnik, C. Romanin, and J. Heitz, “EUV micropatterning for biocompatibility control of PET”, Appl. Phys. A: Mat. Sci. Proc. 100, 511-516 (2010).
- 19. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, M. Szczurek, and P. Wachulak, “Laser-plasma EUV source dedicated for surface processing of polymers”, Nucl. Instrum. Methods in Phys. Res. A647, 125-131 (2011).
- 20. R. Spitzer, T. Orzechowski, D. Phillion, R. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime”, J. Appl. Phys. 79, 2251-2258 (1996).
- 21. A. Cummings, G. O’Sullivan, P. Dunne, E. Sokell, N. Murphy, and J. White, “Conversion efficiency of a laser-produced Sn plasma at 13.5 nm, simulated with a one-dimensional hydrodynamic model and treated as a multi-component blackbody”, J. Phys. D: Appl. Phys. 38, 604 (2005).
- 22. T. Barbee Jr, S. Mrowka, and M. Hettrick, “Molybdenum-silicon multilayer mirrors for the extreme ultraviolet”, Appl. Opt. 24, 883-886 (1985).
- 23. Y. Ueno, H. Hoshino, T. Ariga, T. Miura, M. Nakano, H. Komori, G. Soumagne, A. Endo, H. Mizoguchi, A. Sumitani, and K. Toyoda, “Characterization of various Sn targets with respect to debris and fast ion generation”, Proc. SPIE 6517, 65173B (2007).
- 24. A. Takahashi, D. Nakamura, K. Tamaru, T. Akiyama, and T. Okada, “Emission characteristics of debris from CO2 and Nd:YAG laser produced tin plasmas for extreme ultraviolet lithography light source”, Appl. Phys. B: Lasers and Opt. 92, 73-77 (2008).
- 25. J. Fujimoto, T. Ohta, K.M. Nowak, T. Suganuma, H. Kameda, M. Moriya, T. Yokoduka, K. Fujitaka, A. Sumitani, and H. Mizoguchi, “Development of the reliable 20 kW class pulsed carbon dioxide laser system for LPP EUV light source”, Proc. SPIE 7969, 7969-99 (2011).
- 26. D. Brandt, I. Fomenkov, A. Ershov, W. Partlo, D. Myers, R. Sandstrom, B. La Fontaine, M. Lercel, A. Bykanov, N. Bowering, O. Vaschenko, O. Khodykin, S. Srivastava, I. Ahmad, C. Rajyaguru, P. Das, V. Fleurov, K. Zhang, D. Golich, S. De Dea, R. Hou, W. Dunstan, C. Wittak, P. Baumgart, T. Ishihara, R. Simmons, R. Jacques, and R. Bergstedt, “LPP source system development for HVM”, Proc. SPIE 7969, 7969-51 (2011).
- 27. T. Otsuka, B. Li, C. O’Gorman, T. Cummins, D. Kilbane, T. Higashiguchi, N. Yugami, W. Jiang, A. Endo, P. Dunne, and G. O’Sullivan, “A 6.7-nm beyond EUV source as a future lithography source”, Proc. SPIE 8322, 832214 (2012).
- 28. T. Cummins, T. Otsuka, N. Yugami, W. Jiang, A. Endo, B. Li, C. O’Gorman, P. Dunne, E. Sokell, G. O’Sullivan, and T. Higashiguchi, “Optimizing conversion efficiency and reducing ion energy in a laser-produced Gd plasma”, Appl. Phys. Lett. 100, 061118 (2012).
- 29. V. Bakshi, EUV Sources for Lithography, 149, SPIE Press, 2006.
- 30. J. White, P. Dunne, P. Hayden, F. O’Reilly, and G. O’Sullivan, “Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength”, Appl. Phys. Lett. 90, 181502 (2007).
- 31. A. Hassanein, V. Sizyuk, S. Harilal, and T.Sizyuk, “Analysis, simulation, and experimental studies of Nd:YAG and CO2 laser-produced plasma for EUV lithography sources”, Proc. SPIE 7636, 76360A (2010).
- 32. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma”, J. Appl. Phys. 109, 063306 (2011).
- 33. T. Ando, S. Fujioka, H. Nishimura, N. Ueda, Y. Yasuda, K. Nagai, T. Norimatsu, M. Murakami, K. Nishihara, N. Miyanaga, Y. Izawa, K. Mima, and A. Sunahara, “Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas”, Appl. Phys. Lett. 89, 151501 (2006).
- 34. D. Brandt, I. Fomenkov, A. Ershov, W. Partlo, D. Myers, N. Bowering, A. Bykanov, G. Vaschenko, V. Khodykin, J. Hoffman, E. Vargas, R. Simmons, J. Chavez, and C. Chrobak, “LPP EUV source development for HVM”, Proc. SPIE 6517, 65170Q (2007).
- 35. J. Fujimoto, T. Hori, T. Yanagida, and H. Mizoguchi, “Development of laser-produced tin plasma-based EUV light source technology for HVM EUV lithography”, Phys. Res. Int. 2012, (2012).
- 36. G. Moeller and J. Rigden, “High-power laser action in CO2:He mixtures”, Appl. Phys. Lett. 7, 274-276 (1965).
- 37. C. K. N. Patel, P. K. Tien, and J. H. McFee, “CW high-power CO2:N:He laser”, Appl. Phys. Lett. 7, 290-292 (1965).
- 38. T. Bridges and P. Cheo, “Spontaneous self-pulsing and cavity dumping in a CO2 laser with electro-optic Q-switching”, Appl. Phys. Lett. 14, 262-264 (1969).
- 39. K. Gurs and R. Muller, “Internal modulation of optical masers”, Proc. Symposium on Optical Masers, pp. 243-252, New York, 1963.
- 40. J. Kiefer, T. Nussmeier, and F. Goodwin, “Intracavity CdTe modulators for CO2 lasers”, IEEE J. Quant. Electron. 8, 173-179 (1972).
- 41. A. Beaulieu, “Transversely excited atmospheric pressure CO2 lasers”, Appl. Phys. Lett. 16, 504 (1970).
- 42. J. Emmett, J. Nuckolls, and L. Wood, “Fusion power by laser implosion”, Sci. Am. 230, 24-37 (1974).
- 43. D. Cartwright, “Summary of research for the Inertial Confinement Fusion Program at Los Alamos National Laboratory”, tech. rep. Los Alamos National Lab., Los Alamos, 1985.
- 44. W. Boord, Y. Pao, F. Phelps Jr, and P. Claspy, “Far-infrared radiation isolator”, IEEE J. Quant. Electron. 10, 273-279 (1974).
- 45. C. Phipps Jr and S. Thomas, “High-power isolator for the 10-μm region employing interband Faraday rotation in germanium”, J. Appl. Phys. 47, 204 (1976).
- 46. S. Czuchlewski, A. Nowak, E. Foley, and J. Figueira, “Broadband gas isolator for high-power CO2 lasers”, Opt. Lett. 2, 39-41 (1978).
- 47. P. Corkum, A. Alcock, and K. Leopold, “Electron-beam-controlled transmission of 10-μm radiation in semiconductors”, J. Appl. Phys. 50, 3079-3082 (1979).
- 48. P. Cheo and R. Abrams, “Rotational relaxation rate of CO2 laser levels”, Appl. Phys. Lett. 14, 47-49 (1969).
- 49. B. Feldman, “Short-pulse multiline and multiband energy extraction in high-pressure CO2 laser amplifiers”, IEEE J. Quant. Electron. 9, 1070-1078 (1973).
- 50. J. Figueira, J. Ladish, G. Schappert, and S. Thomas, “Amplification of multiline/multiband CO2 laser pulses”, Appl. Phys. Lett. 27, 591-592 (1975).
- 51. C. K. N. Patel, “Selective excitation through vibrational energy transfer and optical maser action in CO2”, Phys. Rev. Lett. 13, 617-619 (1964).
- 52. T. Bridges, E. Burkhardt, and P. W. Smith, “CO2 waveguide lasers”, Appl. Phys. Lett. 20, 403-405 (1972).
- 53. R. Abrams and W. Bridges, “Characteristics of sealed-off waveguide CO2 lasers”, IEEE J. Quant. Electron. 9, 940-946 (1973).
- 54. D. R. Hall, R. M. Jenkins, E. K. Gorton, and P. H. Cross, “A compact sealed waveguide CO2 laser”, J. Phys. D: Appl. Phys. 10, 1 (1977).
- 55. J. Lachambre, J. Macfarlane, G. Otis, and P. Lavigne, “A transversely RF-excited CO2 waveguide laser”, Appl. Phys. Lett. 32, 652 (1978).
- 56. K. M. Abramski, A. D. Colley, H. J. Baker, and D. R. Hall, “Power scaling of large-area transverse radio frequency discharge CO2 lasers”, Appl. Phys. Lett. 54, 1833-1835 (1989).
- 57. P. E. Jackson, H. J. Baker, and D. R. Hall, “CO2 large-area discharge laser using an unstable-waveguide hybrid resonator”, Appl. Phys. Lett. 54, 1950-1952 (1989).
- 58. A. D. Colley, H. J. Baker, and D. R. Hall, “Planar waveguide, 1 kW cw, carbon dioxide laser excited by a single transverse RF discharge”, Appl. Phys. Lett. 61, 136-138 (1992).
- 59. F. Villarreal, P. R. Murray, H. J. Baker, and D. R. Hall, “Enhanced peak power and short pulse operation of planar waveguide CO2 lasers”, Appl. Phys. Lett. 78, 2276-2278 (2001).
- 60. R. Beck, “Fast-axial-flow CO2 laser with integrated turbo-blower”, Appl. Phys. B: Lasers and Optics 42, 233-236 (1987).
- 61. H. Hoshino, T. Suganuma, T. Asayama, K. M. Nowak, M. Moriya, T. Abe, A. Endo, and A. Sumitani, “LPP EUV light source employing high-power CO2 laser”, Proc. SPIE 6921, 692131 (2008).
- 62. D. Brandt, I. Fomenkov, A. Ershov, W. Partlo, D. Myers, N. Bowering, N. Farrar, G. Vaschenko, O. Khodykin, A. Bykanov, J. Hoffman, C. Chrobak, S. Srivastava, I. Ahmad, C. Rajyaguru, D. Golich, D. Vidusek, S. De Dea, and R. Hou, “LPP source system development for HVM”, Proc. SPIE 7271, 727103 (2009).
- 63. Y. Tanino, T. Yamamoto, J. Nishimae, and S. Fujikawa, “Efficient pulse amplification using a transverse-flow CO2 laser for extreme ultraviolet light source”, Opt. Lett. 37, 3300-3302 (2012).
- 64. D. Thompson, G. Busch, C. Hewitt, D. Remelius, T. Shimada, C. Strauss, C. Wilson, and T. Zaugg, “High-speed random access laser tuning”, Appl. Opt. 38, 2545-2553 (1999).
- 65. Y. Kaufman, “Passive-Q-switching at high intensities and high absorber pressures”, Appl. Opt. 15, 1530-1534 (1976).
- 66. G. Staupendahl, K. Schindler, and T. Medoiose, “A new simple method of 10 ns CO2 laser pulse generation”, Opt. Quant. Electron. 12, 77-79 (1980).
- 67. T. Sakai and N. Hamada, “A Q-switched CO2 laser using intense pulsed RF discharge and high speed rotating chopper”, Proc. SPIE 2502, 25 (1992).
- 68. P. Lavigne, J. Gilbert, and J. L. Lachambre, “Passive mode-locking of a large volume TEA-CO2 laser using an unstable resonator configuration”, Opt. Commun. 14, 194-199 (1975).
- 69. A. J. Alcock and A. C. Walker, “Generation and detection of 150-psec mode-locked pulses from a multi-atmosphere CO2 laser”, Appl. Phys. Lett. 25, 299-301 (1974).
- 70. P. Bernard and P. Belanger, “Stable pulses of variable width from a mode-locked hybrid TEA-CO2 laser”, Opt. Lett. 4, 196-198 (1979).
- 71. A. Nath, U. Chatterjee, and D. Bhawalkar, “Multiline operation of TEA CO2 laser with hot CO2 as an intracavity absorbing medium”, Opt. Quant. Electron. 11, 461-463 (1979).
- 72. R. Giles and A. Offenberger, “Multiline injection mode locking of a transversely excited atmosphere CO2 laser”, Appl. Phys. Lett. 40, 944-946 (1982).
- 73. M. Piltch, “Multi-line pulsed CO2 oscillator”, Opt. Commun. 7, 397-399 (1973).
- 74. R. Rooth, F. Van Goor, and W. Witteman, “An independently adjustable multiline AM mode-locked TEA CO2 laser”, IEEE J. Quant. Electron. 19, 1610-1612 (1983).
- 75. I. Kitazima and H. Iwasawa, “Slow relaxation processes in SF gas after pumping by a CO2 laser pulse”, Laser Chemistry 11, 39-48 (1991).
- 76. T. Ariga, H. Hoshino, T. Miura, and A. Endo, “High-power pulsed CO2 laser for EUV lithography”, Proc. SPIE 6151, 61513M (2006).
- 77. I. Fomenkov, B. Hansson, N. Bowering, A. Ershov, W. Partlo, V. Fleurov, V. Khodykin, A. Bykanov, C. Rettig, J. Hoffman, E. Vargas, J. Chavez, W. Marx, and D. Brandt, “High power low cost drive laser for LPP source”, Proc. SPIE 6151, 61513X (2006).
- 78. K. M. Nowak, A. Sumitani, A. Endo, J. Lippert, T. Schreiber, and A. Tunnermann, “Regenerative amplification of broadband seed pulse for multi-line operation of high power CO2 laser system”, unpublished (2008).
- 79. J. Faist, F. Capasso, D. Sivco, C. Sirtori, A. Hutchinson, and A. Cho, “Quantum cascade laser”, Science 264, 553 (1994).
- 80. K. M. Nowak, T. Ohta, T. Suganuma, T. Yokotsuka, J. Fujimoto, H. Mizoguchi, and A. Endo, “Spectral characteristics of quantum-cascade laser operating at 10.6mm wavelength for a seed application in laser-produced-plasma extreme UV source”, Opt. Lett. 37, 4765-4767 (2012).
- 81. K. M. Nowak, T. Ohta, T. Suganuma, T. Yokotsuka, J. Fujimoto, and H. Mizoguchi, “Wavefront measurement of single-mode quantum cascade laser beam for seed application in laser-produced plasma extreme ultraviolet system”, Opt. Lett. 37, 4886-4888 (2012).
- 82. K. M. Nowak, T. Ohta, T. Suganuma, J. Fujimoto, and H. Mizoguchi, “A novel multi-line short-pulse solid-state seeded carbon-dioxide laser for extreme ultraviolet employing multi-pass radio-frequency excited slab amplifier”, Opt. Lett. 38, 881-883 (2013).
- 83. K. M. Nowak, T. Suganuma, H. Hoshino, M. Moriya, T. Ohta, A. Sumitani, and A. Endo, “Improving efficiency of CO2 laser system for LPP Sn EUV source”, presented at EUVL Workshop, Maui, Hawaii, 2010 (EUVL Litho Inc.).
- 84. K. M. Nowak, T. Ohta, J. Fujimoto, H. Mizoguchi, and A. Endo, “Towards 20kW CO2 laser system for Sn LPP EUV source – a review of developments at Gigaphoton”, presented at EUVL Workshop, UCD Dublin, 2011 (EUVL Litho Inc.).
- 85. L. Hilico, A. Douillet, J. Karr, and E. Tournié, “Note: A high transmission Faraday optical isolator in the 9.2 μm range”, Rev. Sci. Instr. 82, 096106-096106 (2011).
- 86. W. Witteman, The CO2 Laser, Springer-Verlag, Berlin and New York, 1987.
- 87. A. Endo, “High power CO2 laser”, presented at EUV Source Workshop, Baltimore, 2007 (EUV Litho Inc.).
- 88. K. M. Nowak, H. Hoshino, T. Suganuma, and A. Endo, “20kW short pulse CO2 laser system for LPP Sn EUV source”, presented at EUVL Workshop, Wailea, Hawaii, 2008 (EUVL Litho Inc.).
- 89. T. Ohta, K. M. Nowak, T. Suganuma, H. Kameda, M. Moriya, T. Yokoduka, Y. Kawasuji, J. Fujimoto, and H. Mizoguchi, “Development of the reliable high power pulsed carbon dioxide laser system for LPP EUV light source”, Proc. SPIE 8322, 832220 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ff4088d-af11-4f3a-8415-de76190ce9d2