PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enzymatyczna bioremediacja ksenobiotyków

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Enzymatic bioremediation of xenobiotics
Języki publikacji
PL
Abstrakty
PL
Wciąż wzrastające zanieczyszczenie środowiska związane z częstym przedostawaniem się do środowiska toksycznych substancji jest jednym z największych problemów ekologicznych współczesnego świata. Wzrasta więc zainteresowanie nowymi, ekologicznymi technologiami remediacji, niewymagającymi dużych nakładów finansowych, pozwalającymi na całkowite lub częściowe oczyszczenie środowiska. Technologie bioremediacji, wykorzystujące potencjał mikroorganizmów, mogą być z powodzeniem wykorzystywane do usuwania ze środowiska zanieczyszczeń alifatycznymi bądź aromatycznymi związkami pochodzenia naftowego. Jednakże, w przypadku substancji o charakterze ksenobiotyków efektywność mikrobiologicznego rozkładu może ulec ograniczeniu. Wśród czynników biologicznych enzymy posiadają wysoki potencjał do efektywnego przekształcania i detoksykacji zanieczyszczeń i potencjalnie mogą one zostać wykorzystane do oczyszczania zanieczyszczonego środowiska. Celem pracy było przedstawienie, na podstawie literatury, niektórych grup enzymów zdolnych do przekształcania ksenobiotyków w nieszkodliwe związki. Znaczna uwaga została poświęcona enzymom pochodzącym z grzybów białej zgnilizny, charakteryzujących się wysokim potencjałem do efektywnego rozkładu ksenobiotyków. W artykule zestawiono zarówno zalety, jak i wady stosowania enzymów w bioremediacji zanieczyszczonego środowiska, a także perspektywy aplikacji in situ bioremediacji z wykorzystaniem enzymów.
EN
Environmental pollution is growing more and more due to the frequently deliberate release of hazardous, toxic substances into the environment and it has become one of the biggest ecological problems of the world. Therefore, a growing interest is being devoted to develop new, cost-effective and eco-friendly remediation technology capable of partial or total recovery of polluted environment. Bioremediation that uses naturally existing catabolic potential of microorganisms can be efficiently used to clean up certain pollutants such as aliphatic or aromatic hydrocarbons. However, for chemicals exhibiting high xenobiotic character, like polyaromatic hydrocarbons, chlorophenols, dioxines, PCBs, etc., microorganisms can turn out to be ineffective. Among biological agents, enzymes have a great potential to effectively transform and detoxify pollutants and are potentially suitable to restore polluted environments. Moreover, the use of enzymatic proteins may represent a good alternative for overcoming most disadvantages related to the use of microorganisms. They are active in the presence of microbial predators and antagonists, can be used under extreme conditions limiting microbial activity and are effective at low pollutant concentrations. This work will examine the possibility of using enzyme preparations as an element of bioremediation technology. The main terms which must be fulfilled while using this type of technology will be presented. This review will also examine some class of enzymes, mainly oxidoreductases and hydrolases, that are capable of transforming xenobiotics effectively into innocuous products. Particular attention will be devoted to enzymes from white-rot fungi, such as Mn-peroxidase, lignin proxidase and laccase, which have a great potential towards xenobiotic compounds transformation. Also the use of lipase in biodegradation of phtalanes and as an agent for monitoring of bioremediation progress will be discussed. The main advantages as well as disadvantages that are present in the application of enzymes in the bioremediation of polluted environments will be examined in details. The future perspective for the in situ application of enzymatic bioremediation of polluted with xenobiotics environments will be discussed.
Słowa kluczowe
Rocznik
Strony
39--55
Opis fizyczny
Bibliogr. 74 poz.
Twórcy
  • Politechnika Łódzka, Instytut Biochemii Technicznej, ul. Stefanowskiego 4/10, 90-924 Łódź
autor
  • Politechnika Łódzka, Instytut Biochemii Technicznej, ul. Stefanowskiego 4/10, 90-924 Łódź
autor
  • Politechnika Łódzka, Instytut Biochemii Technicznej, ul. Stefanowskiego 4/10, 90-924 Łódź
Bibliografia
  • [1] Rieger P.G., Meier H-M., Gerle M., Vogt U., Groth T., Knackmuss H-J., Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence, J. of Biotechnol. 2002, 94, 101-123.
  • [2] Gianfreda L., Sannino F., Filazzola M.T., Leonowicz A., Catalytic behaviour and detoxifying ability of a laccase from the fungal strain Cerrena unicolor, J. Mol. Catal. B: Enzymatic 1998, 14, 13-23.
  • [3] Nicell J.A., Environmental applications of enzymes, Interdisci. Environ. Rev. 2001, 3, 14-41.
  • [4] Gianfreda L., Bollag J.M., Isolated enzymes for the transformation and detoxification of organic pollutants, [in:] R.G. Burns, R. Dick. Enzymes in the Environment: Activity, Ecology and Applications, Mercel Dekker, New York 2002.
  • [5] Keum Y.S., Li Q. X., Fungal laccase-catalysed degradation of hydroxyl polychlorinated biphenyls, Chemosphere 2004, 56, 23-30.
  • [6] Alcade M., Ferrer M., Plou F.J., Ballesteros A., Environmental biocatalysis: from remediation with enzymes to novel green processes, Trends in Biotechnol. 2006, 24, 281-287.
  • [7] Iwamoto T., Nasu M., Current bioremediation practice and perspective, J. of Bioscience& Bioengineering 2001, 92, 1-8.
  • [8] Fernando T., Aust S.D., Biodegradation of toxic chemicals by white-rot fungi, [in:] G.R. Chaudhry GR (ed), Biological Degradation and Bioremediation of Toxic Chemicals, Chapman & Hall, London 1994, 386-402.
  • [9] Novotny C., Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate, Soil Biology & Biochemistry 2004, 36, 1545-1551.
  • [10] Gianfreda L., Rao M.A., Potential of extracellular enzymes in remediation of polluted soils a review, Enzyme and Microbial Technology, 2004, 35, 339 -354.
  • [11] Suthersan S.S., Remediation engineering: design concepts, Ed S.S. Suthersan CRC Press, Boca Raton 1999.
  • [12] Whiteley C.G., Lee D.J., Enzyme technology and biological remediation, Enzyme and Microbial Technol., 2006, 38, 291-316.
  • [13] Sutherland T.D., Horne I., Weir K.M., Coppin C.W., Williams M.R., Selleck M., Russel R.J., Oakeshott J.G., Enzymatic bioremediation: from enzyme discovery to applications, Clin. Exp. Pharmacol. Physiol., 2004, 31, 817-821.
  • [14] Pieper D.H., Martins dos Santos V.A., Golyshin P.N., Genomic and mechanistic insight into the biodegradation of organic pollutants, Curr. Opin. Biotechnol., 2004,15, 215-224.
  • [15] Ruggaber T.P., Talley J.W., Enhancing Bioremediation with Enzymatic Processes: A Review, Practice Periodical of Hazardous, Toxic, And Radioactive Waste Management ASCE, 2006, 10, 73-85.
  • [16] Burton S.G., Deyelopment of bioreactors for application of biocatalysis in biotransformation and bioremediation, Pure and Applied Chemistry, 2001, 73, 77-83.
  • [17] Scow K.M., Hicks K.A., Natural attenuation and enhanced bioremediation of organic contaminants in groundwater, Curr. Opin. Biotechnol. 2005, 16, 246-253.
  • [18] Bajpai P., Biological bleaching of chemical pulps, Crit. Rev. Biotechnol. 2004, 24, 1-58.
  • [19] Gullotto A., Branciamore S., Duchi I., Cano M.F.P., Randazzo D., Tilli S., Giardina S., Sannia G., Scozzafava A., Briganti F., Combined action of a bacterial monooxygenase and a fungal laccase for the biodegradation of mono- and poly-aromatic hydrocarbons, Bioresource Technology 2008, 99, 8353-8359.
  • [20] Levin L., Forchiassin F., Ligninolytic enzymes of the white rot basidomycete Trametes trogii, Acta Biotechnol. 2001, 21, 179-186.
  • [21] Field J.A., Dejong E., Feijoocosta G., Debont J.A.M., Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics, Trends Biotechnol. 1993, 11, 44-49.
  • [22] Cremonesi P., Cavalieri E.L., Rogan E.G., One-electron oxidation of 6-substituted benzo[a]pyrene by manganic acetale: a model for metabolic activation, J. Org. Chem. 1989, 54, 3561-3570.
  • [23] Pointing S.B., Feasibility of bioremediation by white-rot fungi, Appl. Microbiol. Biotechnol. 2001, 57, 20-32.
  • [24] Torres-Duarte C., Roman R., Tinoco R., Vazquez-Duhalt R., Halogenated pesticide transformation by a laccase-mediator system, Chemosphere 2009, 77, 687-692.
  • [25] Duran N., Esposito E., Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil teatment: a review, App. Catal. B: Environ. 2000, 28, 83-89.
  • [26] Gold M.H., Alic M., Molecular biology of the lignin-degrading basidomycete Phanerochaete chrysosporium, Microbiol Rev. 1993, 57, 605-622.
  • [27] Haglund Ch., Biodegradation of xenobiotic compounds by the white-rot fungus Trametes trogii, Master’s degree project, University of Buenos Aires, Argentina 1999.
  • [28] Johjima T., Itoh N., Kabuto M., Tokimura F., Nakagawa T., Wariishi H., Tanaka H., Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium, Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 1989-1994.
  • [29] Barr D.P., Aust S.D., Mechanisms white-rot fungi use to degradate pollutants, Environ. Sci. Technol. 1994, 28, 78A-87A.
  • [30] Gelpke M.D.S., Mayfield-Gambill M., Cereghino G.P.L., Gold M.H., Homologus expression of recombinant lignin peroxidase in Phanerochaete chrysosporium, Appl. Environ. Microbiol. 1999, 65, 1670-1674.
  • [31] Banci L., Ciofi-Baffoni S., Tien M., Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers, Biochemistry 1999, 38, 3205-3210.
  • [32] Casella L., Poli S., Gullotti M., Selvaggini C., Berinelli T., Marchesini A., The chloroperoxidase- catalyzed oxidation of phenols, Mechanism selectivity and characterization of enzyme- -substrate complexes, Biochemistry 1994, 33, 6377- 6386.
  • [33] Torres E., Bustos-Jaimes I., Le Borgne S., Potential use of oxidative enzymes for the detoxification of organic pollutants, Appl. Catal. B. Environ. 2003, 46, 1-15.
  • [34] Shrivastava R., Christian V., Vyas B.R.M., Enzyme decolorization of sulfonpthalein deys, Enzyme Mcrobiology and Technology 2005, 36, 333-337.
  • [35] Vares T., phD Thesis. Department of Applied Chemistry and Microbiology, Division of Microbiology, University of Helsinky, Finland 1996.
  • [36] Tuor U., Wariishi H., Schoemaker H.E., Gold M.H., Oxidation of phenolic arylglycerol I-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an J-carbonyl model compound, Biochemistry 1992, 31, 4986-4995.
  • [37] Mester T., Tien M., Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants, Inter Biodeterioration & Biodegradation 2000, 46, 51-59.
  • [38] Sack U., Hofrichter M., Fritsche W., Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii, FEMS Microbiol. Lett. 1994, 152, 227-234.
  • [39] Kapich A., Hofrichter M., Vares T., Hatakka A., Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and 14C-labeled lignins, Biochem. Biophys. Res. Comm. 1999, 259, 212-219.
  • [40] Bogan B.W., Lamar R.T., Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extra cellular ligninolytic enzymes, Appl. Environ. Microbiol. 1996, 62, 1597-1603.
  • [41] Novotny C., Vyas B.R., Erbanova P., Kubatova A., Sasek V., Removal of various PCB’s by various white-rot fungi in liquid cultures; Folia Microbiol. 1997, 42, 136-140.
  • [42] Guenther T., Sack U., Hofrichter M., Laetz M., Oxidation of PAH and PAH- derivatives by fungal and plant oxidoreductases, J. Basic Microbiol. 1998, 38, 113-122.
  • [43] Dodor E.D., Hwang H-M., Ekunwe S.I.N., Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor, Enzyme and Microbial Technol. 2004, 35, 210-217.
  • [44] Mougin Ch., Jolivalt C., Briozzo P., Madzak C., Fungal laccases: from structure - activity studies to environmental applications, Environ. Chem. Lett. 2003, 1, 145-148.
  • [45] Wu Y., Teng Y., Li Z., Liao X., Luo Y., Potential role of policyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil, Soil Biol&Biochem. 2008, 40, 789-796.
  • [46] Bollag J.M., Shuttleworth K.L., Anderson D.H., Laccase-mediated detoxification of phenolic compounds, Applied Environmental Microbiology 1988, 54, 3086-3091.
  • [47] Gianfreda L., Xu F., Bollag J-M., Laccases: a useful group of oxidoreductive enzymes, Bioremediat. J. 1999, 3, 1-26.
  • [48] Gianfreda L., Iamarino G., Scelza R., Rao M.A., Oxidative catalyst for the transformation of phenolic pollutants: a brief review, Biocatal. Biotransform. 2006, 24, 177-187.
  • [49] Samanta S.K., Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation, Trends Biotechnol. 2002, 20, 243-248.
  • [50] Bautista L.F., Morales G., Sanz R., Immobilization strategies for laccase from Trametes versicolor on mesostructured silica materials and the application to the degradation of naphthalene, Bioresource Technology 2010, 101, 8541-8548.
  • [51] Dubroca J., Brault A., Kollmann A., Touton I., Jolivalt C., Kerhoas L., Mougin C., Biotransformation of Nonylphenol Surfactants in Soils Amended with Contaminated Sewage Sludges, Environmental Chemistry, Springer, Berlin - Heidelberg New-York 2005, 305-315.
  • [52] Majeau J.A., Stinder K., Brar S.K., Tyagi R.D., Laccases for removal of recalcitrant and emerging pollutants, Bioresource Technology 2010, 101, 2331-2350.
  • [53] Alcalde M., Bulter T., Zumarraga M., Garcia-Arellano H., Mencia M., Plou F.J., Ballesteros A., Screening mutant libraries of fungal laccases in the presence of organic solvents, J. Biomol. Screen. 2005, 10, 624-631.
  • [54] Camarero S., Ibarra D., Martinez M.J., Martinez A.T., Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes, Appl. Environ. Microbiol. 2005, 71, 1775-1784.
  • [55] Margesin R., Zimmerbauer A., Schinner F., Soil lipase activity - a useful indicator of oil biodegradation, Biotechnol. Techniques 1999, 13, 859- 863.
  • [56] Margesin R., Zimmerbauer A., Schinner F., Monitoring of bioremediation by soil biological activities, Chemosphere 2000, 40, 339-346.
  • [57] Lee S-H., Oh B-I., Kim J-G., Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity, Bioresource Technology 2008, 99, 2578- 2587.
  • [58] Mita L., Sica V., Guida M., Nicolucci C., Grimaldi T., Caputo L., Bianco M., Rossi S., Bencivenga U., Eldin M.S.M., Tufano M.A., Diano N., Employment of immobilised lipase from Candida rugosa for the bioremediation of waters polluted by dimethylphthalate, as a model of endocrine disruptors, J. Molec. Catal. B: Enzym. 2010, 62, 133-141.
  • [59] Nannipieri P., Bollag J.-M., Use of enzymes to detoxify pesticide- contaminated soils and waters, J. Environ. Qual. 1991, 20, 510-517.
  • [60] Karam J., Nicell J.A., Potential application of enzymes in waste treatment, J. Chem. Technol. Biotechnol. 1997, 69, 141-153.
  • [61] Banerjee A., Sharma R., Banerjee U.C., The nitryle-degrading enzymes: current status and future prospects, Appl. Microbiol. Biotechnol. 2002, 60, 33-44.
  • [62] Pollak P., Romender G., Hagedorn F., Gelbke H.P., [in:] Elvers B., Hawikins S., Schulz G. (eds), Ullman’s encyclopedia of industrial chemistry, vol. A17. 5th Ed. Wiley/VCH, Weinheim 1991, 363-376.
  • [63] Heitkamp M.A., Freeman J.P., Miller D.W., Cerniglia C.E., Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products, Appl. Environ. Microbiol. 1988, 54, 2556-2565.
  • [64] Somero G.N., Adaptation of enzymes to temperature: searching for basic “strategies”, Comp. Biochem. Physiol., Part B 2004, 139, 321-333.
  • [65] Singer A.C., Thompson I.P., Bailez M.J., The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation, Curr. Opin. Microbiol. 2004, 7, 239-244.
  • [66] Ahuja S.K., Ferreira G.M., Moreira A.R., Utilization of enzymes for environmental applications, Critic. Rev. Biotechnol. 2004, 24, 125-154.
  • [67] Ikehata K., Buchanan I.D., Smith D.W., Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment, Environ Eng. Sci. 2004, 3, 1-19.
  • [68] Jacobuci F.C., Kelly V.C., Beatriz M.A., Andre F.F., Lucia R.D., Degradation of diesel oil by biosurfactant-producing bacterial strains, The First International Congress on Petroleum Contaminated Soils, Sediments and Water, London 2001.
  • [69] Petrovic O., Knezevic P., Markovic J., Roncevic S., Screening method for detection of hydrocarbon-oxidizing bacteria in oil-contaminated water and soil specimens, Journal of Microbiological Methods 2008, 74, 110-113.
  • [70] Leeson A., Honchee R.E., Soil Bioventing, Principles and Practice, CRC Lewis, Boca Raton 1997, 120-167.
  • [71] Scherr K., Aichberger H., Braun R., Loibner A.P., Influence of soil fractions on microbial degradation behavior of mineral hydrocarbons, European Journal of Soil Biology 2007, 43, 341- -350.
  • [72] Paul D., Pandey G., Pandey J., Jain R.K., Accessing microbial diversity for bioremediation and environmental restoration, Trends Biotechnol. 2005, 23, 135-142.
  • [73] Rao M.A., Scelza R., Scotti R., Gianfreda L., Role of enzymes in the remediation of polluted environments, J. Soil Sci. Plant Nurt. 2010, 10, 333-353.
  • [74] Gómez Jiménez-TR., Moliterni E., Rodríguez L., Fernández F.J., Villaseñor J., Feasibility of mixed enzymatic complexes to enhanced soil bioremediation processes, Procedia Environ. Sciences 2011, 9, 54-59.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ff2d853-9cd1-44f6-9682-0931ea24639c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.