PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer Experiments with Mersenne Primes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have calculated on the computer the sum BM of reciprocals of first 47 known Mersenne primes with the accuracy of over 12000000 decimal digits. Next we developed BM into the continued fraction and calculated geometrical means of the partial denominators of the continued fraction expansion of BM. We get values converging to the Khinchin’s constant. Next we calculated the n-th square roots of the denominators of the n-th convergents of these continued fractions obtaining values approaching the Khinchin-Lèvy constant. These two results suggests that the sum of reciprocals of all Mersenne primes is irrational, supporting the common belief that there is an infinity of the Mersenne primes. For comparison we have done the same procedures with a slightly modified set of 47 numbers obtaining quite different results. Next we investigated the continued fraction whose partial quotients are Mersenne primes and we argue that it should be transcendental.
Twórcy
autor
Bibliografia
  • [1] B. Adamczewski and Y. Bugeaud, On the Maillet-Baker continued fractions. Journal für die reine und angewandte Mathematik, 606, 105-121 (2007).
  • [2] B. Adamczewski and Y. Bugeaud, A short proof of the transcendence of thue-morse continued fractions. American Mathematical Monthly 114, 536-540 (2007).
  • [3] B. Adamczewski, Y. Bugeaud, and L. Davison, Continued fractions and transcendental numbers. Ann. Inst. Fourier 56, 2093-2113 (2006).
  • [4] A. Baker, Continued fractions of transcendental numbers. Mathematika 9, 1-8 (1962).
  • [5] V. Brun, La serie 1/5 + 1/7 +... est convergente ou finie. Bull. Sci.Math. 43, 124-128 (1919).
  • [6] Y. Bugeaud and P. Hubert Transcendence with Rosen continued fractions J. Eur. Math. Soc. (JEMS) 15, 39-51 (2013).
  • [7] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers. Mathematika 2, 160-167 (1955).
  • [8] S. Finch, Mathematical Constants. Cambridge University Press 2003.
  • [9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Oxford Science Publications 1980.
  • [10] J. Havil, Gamma: Exploring Euler’s Constant. Princeton University Press, Princeton 2003.
  • [11] J. Kaczorowski, The boundary values of generalized Dirichlet series and a problem of Chebyshev. Asterisque 209, 227-235 (1992).
  • [12] A. Y. Khinchin, Zur metrischen Kettenbruchtheorie. Compositio Mathematica 3, 275-286 (1936).
  • [13] A. Y. Khinchin, Continued Fractions. Dover Publications, New York 1997.
  • [14] P. Lévy, Sur le développement en fraction continue d’un nombre choisi au hasard. Compositio Mathematica 3, 286-303 (1936).
  • [15] E. Maillet, Introduction á la théorie des nombres transcendants et des propriétés arithmétiques des fonctions. Gauthier-Villars, Paris 1906.
  • [16] T. Nicely, Enumeration to 1:6 x 1015 of the twin primes and Brun’s constant. http://www.trnicely.net/twins/twins2.html.
  • [17] M. Queffélec, Transcendance des fractions continues de Thue-Morse. Journal of Number Theor 73, 201-211 (1998).
  • [18] P. Ribenboim, The Little Book of Big Primes. 2ed., Springer 2004.
  • [19] M. Rubinstein and P. Sarnak, Chebyshevs bias. Experimental Mathematics 3, 173-197 (1994).
  • [20] C. Ryll-Nardzewski, On the ergodic theorems II (Ergodic theory of continued fractions). Studia Mathematica 12, 74-79 (1951).
  • [21] M. R. Schroeder, Number Theory In Science And Communication, With Applications In Cryptography, Physics, Digital Information, Computing, And Self-Similarity. Springer-Verlag New York 2006.
  • [22] P. Sebah, Nmbrthry@listserv.nodak.edu mailing list, post dated 22 Aug 2002. see also http://numbers.computation.free.fr/Constants/Primes/twin.pdf.
  • [23] J. Sondow, Irrationality Measures, Irrationality Bases, and a Theorem of Jarnik. http://arxiv.org/abs/math.NT/0406300 2004.
  • [24] The PARI Group, Bordeaux, PARI/GP, version 2.3.2, 2008. available from pari.math.u-bordeaux.fr/.
  • [25] A. van der Poorten and J. Shallit, A specialised continued fraction. Canad. J. Math. 45(5), 1067-1079 (1993).
  • [26] S. S.Wagstaff Jr, Divisors of Mersenne numbers. Mathematics of Computation 40(161), 385-397 (1983).
  • [27] M. Wolf, Remark on the irrationality of the Brun’s constant. ArXiv: math.NT/1002.4174 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fec55d2-3b53-42ed-ade2-93371114fcf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.