PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Emisje gazowe podczas gospodarki gnojowicą

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Gas emissions during slurry management
Języki publikacji
PL
Abstrakty
PL
Rozwój intensywnej produkcji zwierzęcej przyczynia się do skażenia środowiska naturalnego. Jednym z czynników powodujących degradację gleb, wód i atmosfery są odchody zwierzęce. Bezściółkowy system generuje odchody w postaci gnojowicy, która nieracjonalnie zagospodarowana staje się źródłem emisji gazowych. Z budynków inwentarskich podczas magazynowania oraz nawożenia gruntów rolnych dochodzi do emisji zarówno gazów odorowych, jak i cieplarnianych. Emisja amoniaku i siarkowodoru jest uciążliwa dla lokalnej społeczności. Niekorzystnie wpływa również na dobrostan utrzymywanych zwierząt i osób pracujących w budynkach inwentarskich, co może prowadzić w skrajnych przypadkach do zatrucia. Z kolei emisja metanu i podtlenku azotu pogłębia efekt cieplarniany, odpowiadający za zmiany klimatu. Dodatkowo, podtlenek azotu powoduje uszkodzenie warstwy ozonowej.
EN
Pollution of the natural environment is caused by the animal production. The intensification of animal farming results from enrichment of society and population growth. Both processes are observed on the territories of both developed and developing countries. Farm animals’ breeding is inseparably connected with gas emissions, which are the cause of the natural environment pollution. These emissions originate when the animal fodder undergoes the process of digestion. Another source of gas emission are animal faeces, which are generated in form of slurry, during the intensive animal production process. Enormous amounts of slurry are produced in the intensive waste storage conditions. It is used as a natural fertilizer, but it requires rational management, which would help to reduce the amount of emitted gases. Livestock housings and slurry containers are the most responsible sources of gas emissions. The nuisance of animal productions is connected with the emission of odour gases. They cause the decrease in the efficiency of animal production. This is also the group of gases, which are very bothersome for the local community. Hydrogen sulphide and ammonia are two representatives of odour gases. These two gases cause upper respiratory tract problems and eyes’ irritation. The exposure to greater amounts of hydrogen sulphide and ammonia may even lead to death. Both also lead to corrosion. Ammonia is the cause of acid rain, and both water and soil eutrophication. Furthermore, in agriculture, cattle’s intestinal fermentation is responsible for the highest methane emission to the environment. The emission of methane occurs also during the management of faeces. Slurry produces the biggest amount of ammonia. On this account, it is required to use it as a substrate during the fermentation process in the biogas plants. Another greenhouse gas, emitted to the atmosphere in the process of farm animals’ breeding, is nitrous oxide. It is not a widely emitted gas, but it severely deepens the greenhouse effect. Additionally, nitrous oxide contributes to the damage of the ozone layer, thereby enabling the harmful UV light to reach the Earth. In case of the threat that gas emissions brings to the natural environment, certain actions contributing to gas reduction, should have been undertaken. Slurry is being processed during its storage. That helps to limit both the greenhouse and odour gases emissions to the natural environment.
Rocznik
Strony
109--125
Opis fizyczny
Bibliogr. 95 poz.
Twórcy
  • Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Biosystemów, ul. Wojska Polskiego 50, 60-627 Poznań
autor
  • Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Biosystemów, ul. Wojska Polskiego 50, 60-627 Poznań
autor
  • Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Biosystemów, ul. Wojska Polskiego 50, 60-627 Poznań
autor
  • Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Biosystemów, ul. Wojska Polskiego 50, 60-627 Poznań
Bibliografia
  • [1] Gołaś Z., Kozera M., Ekologiczne konsekwencje koncentracji produkcji trzody chlewnej, Journal of Agribusiness and Rural Development 2008, 1, 7, 29-42.
  • [2] Faye B., Alary V., Les enjeux des productions animales dans les pays du Sud, INRA Productions Animales 2001, 14, 1, 3-13.
  • [3] Food and Agriculture Organization of the United Nations (FAO), Livestock's Long Shadow- Environmental Issues and Options, Food and Agriculture Organisation, Rome 2006.
  • [4] Nierenberg D., Rethinking the global meat industry, [In:] State of the World 2006, A Worldwatch Institute Report on Progress toward a Sustainable Society, ed. L. Starke, New York 2006.
  • [5] Kopiński J., Zmiany intensywności organizacji produkcji rolniczej w Polsce, Journal of Agribusiness and Rural Development 2009, 2, 12, 85-92.
  • [6] Główny Urząd Statystyczny (GUS), Rocznik Statystyczny Rolnictwa 2014 r., Warszawa 2014.
  • [7] Gade P.B., Welfare of animal production in intensive and organic systems with special reference to Danish organic pig production, Meat Science 2002, 62, 3, 353-358.
  • [8] Lassen J., Sandøe P., Forkman B., Happy pigs are dirty! - conflicting perspectives on animal welfare, Livestock Science 2006, 103, 3, 221-230.
  • [9] Marć-Pieńkowska J., Topolińska P., Mitura K., Poziom stresu wskaźnikiem dobrostanu zwierząt, Wiadomości Zootechniczne 2014, 2, 36-42.
  • [10] Burgat F., Les revendications des associations de protection des animaux d’élevage, Les animaux d'élevage ont-ils droit au bien-être? INRA, Paris 2001, 65-89.
  • [11] Delgado Ch.L., Policy, technical and environmental determinants and implications of the scaling-up of livestock production in four fast-growing developing countries: A synthesis, FAO, Washington 2004.
  • [12] Donham K.J., Human health and safety in livestock housing, Proceedings of the CIGR Seminar: Latest Development in Livestock Housing, ASAE, St. Joseph, MI 1987, 86-93.
  • [13] Heber A.J., Stroik M., Nelssen J.L., Nichols D.A., Influence of environmental factors on concentrations and inorganic content of aerial dust in swine finishing buildings, Transactions of the ASAE 1988, 31, 3, 875-881.
  • [14] Mankell K.O., Janni K.A., Walker R.D., Wilson M.E., Pettigrew J.E., Jacobson L.D., Wilcke W.F., Dust suppression in swine feed using soybean oil, Journal of Animal Science 1995, 73, 4, 981-985.
  • [15] Pain B.F., Gaseous pollutants from organic waste use in agriculture, Proceedings of the 8th International Conference of the FAO-Network on Recycling Agricultural, Municipal and Industrial Residues in Agriculture (Ramiran 98), eds. J. Martinez, M.N. Maudet, 26-29 May 1998 Cemegref-FAO Editions, Rennes, France 1999.
  • [16] Hartung J., Phillips V.R., Control of gaseous emissions from livestock buildings and manure stores, J. Agric. Eng. Res. 1994, 57, 173-189.
  • [17] Blanes-Vidal V., Hansen M.N., Pedersen S., Rom H.B., Emission of ammonia, methane, and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow, Agriculture, Ecosystems and Environment 2008, 124, 237-244.
  • [18] Erisman J.W., Bleeker A., Hensen A., Vermeulen A., Agricultural air quality in Europe and the future perspectives, Atmos. Environ. 2008, 42, 3209-3217.
  • [19] Wang K., Huang D., Ying H., Luo H., Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry, Biosystems Engineering 2014, 122, 23-30.
  • [20] Morlacchini M., Amerio M., Piva G., L’alimentazione quale mezzo per ridurre l’azione inquinante delle deiezioni suine, Supplemento a l‘informatore agrario 1992, 18, 7-10.
  • [21] Dourmad J.Y., Sève B., Latimier P., Boisen S., Fernández J., Van der Peet-Schwering C., Jongbloed A. W., Nitrogen consumption, utilisation and losses in pig production in France, The Netherlands and Denmark, Livestock Production Science 1999, 58, 3, 30, 261-264.
  • [22] http://www.nik.gov.pl/aktualnosci/rolnictwo/nik-o-fermach-zwierzat.html, 14.01.2015 r.
  • [23] Blanes-Vidal V., Guàrdia M., Dai X.R., Nadimi E.S., Emissions of NH3, CO2 and H2S during swine wastewater management: Characterization of transient emissions after air-liquid interface disturbances, Atmospheric Environment 2012, 54, 408-418.
  • [24] Gorlach E., Mazur T., Chemia rolna, Wydawnictwo Naukowe PWN, Warszawa 2001.
  • [25] Boursier H., Béline F., Paul E., Piggery wastewater characterisation for biological nitrogen removal process design, Bioresource Technology 2005, 96, 351-358.
  • [26] Mazur T., Maćkowak C., Nawożenie gnojowicą, Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa 1978.
  • [27] Jacobs L.W., Utilizing manure is better than disposing of waste, Pigs-Misset 1989, 89, 2.
  • [28] Sánchez M., González J.L., The fertilizer value of pig slurry, I. Values depending on the type of operation, Bioresource Technology 2005, 96, 10, 1117-1123.
  • [29] Sager M., Trace and nutrient elements in manure, dung and compost samples in Australia, Soil Biology and Biochemistry 2007, 39, 1383-1390.
  • [30] Zebarth B.J., Paul J.W., Schmidt O., McDougall R., Influence of the time and rate of liquidmanure application on yield and nitrogen utilization of silage corn in south coastal British Columbia, Can. J. Soil Sci. 1996, 76, 153-164.
  • [31] Petersen J., Fertilization of spring barley by combination of pig slurry and mineral nitrogen fertilizer, J. Agric. Sci. Cambridge 1996, 127, 151-159.
  • [32] Jensen L., Pedersen I., Hansen T., Nielsen N., Turnover and fate of 15N-labelled cattle slurry ammonium-N applied in the autumn to winter wheat, Eur. J. Agron. 2000, 12, 23-35.
  • [33] Mercik S., Chemia rolna podstawy teoretyczne i praktyczne, Wydawnictwo SGGW, Warszawa 2004.
  • [34] Zbytek Z., Talarczyk W., Gnojowica a ochrona środowiska naturalnego, Technika Rolnicza Ogrodnicza Leśna 2008, 4.
  • [35] Arogo J., Zhang R.H., Riskowski G.L., Christianson L.L., Day D.L., Mass transfer coefficient of ammonia in liquid swine manure and aqueous solutions, Journal of Agricultural Engineering Research 1999, 73, 77-86.
  • [36] Blanes-Vidal V., Hansen M.N., Adamsen A.P.S., Feilberg A., Petersen S.O., Jensen B.B., Characterization of odor released during handling of swine slurry: Part II. Effect of production type, storage and physicochemical characteristics of the slurry, Atmospheric Environment 2009, 43, 3006-3014.
  • [37] Husted S., Seasonal variation in methane emission from stored slurry and solid manures, J. Environ. Qual. 1994, 23, 585-592.
  • [38] Kaharabata S.K., Schuepp P.H., Desjardins R.L., Methane emissions from above ground open manure slurry tanks, Global Biogeochem. Cycles 1998, 12, 545-554.
  • [39] Umetsu K., Kimura Y., Takahashi J., Kishimoto T., Kojima T., Young B., Methane emission from stored dairy manure slurry and slurry after digestion by methane digester, Anim. Sci. J. 2005, 76, 73-79.
  • [40] Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley A.N., Smith V.H., Nonpoint pollution of surface waters with phosphorus and nitrogen, Ecol. Appl. 1998, 8, 559.
  • [41] Miatkowski Z., Turbiak J., Burczyk P., Myczko A., Karłowski J., Prognozy zmian aktywności w sektorze rolnictwa, zawierające informacje niezbędne do wyliczenia szacunkowej wielkości emisji gazów cieplarnianych, Raport z realizacji umowy pomiędzy Ministerstwem Rolnictwa i Rozwoju Wsi a Instytutem Technologiczno-Przyrodniczym w Falentach, umowa o dzieło nr BDGzp-2120A-31/10 zawarta w dniu 30.06.2010, Bydgoszcz, Poznań, listopad 2010 r.
  • [42] Olszewska H., Skowron K., Gryń G., Świder A., Rostankowska Z., Dębicka E., Przeżywalność wybranych bakterii wskaźnikowych w składowanej gnojowicy świńskiej, Bydgoskie Towarzystwo Naukowe, Ekologia i Technika 2011, 19, 2, 62-68.
  • [43] Dach J., Starmans D., Heavy metals balance in Polish and Dutch agronomy: Actual state and previsions for the future, Agriculture, Ecosystems and Environment 2005, 107, 309-316.
  • [44] Nicholson F.A., Smith S.R., Alloway B.J., Carlton-Smith C., Chambers B.J., An inventory of heavy metals inputs to agricultural soils in England and Wales, Sci. Total Environ. 2003, 311, 205.
  • [45] López Alonso M., Benetito J.L., Miranda M., Hernández J., Shore R.F., The effect of pig farming on copper and zinc accumulation in cattle in Galicia (North-Western Spain), The Veterinary Journal 2000, 160, 259-266.
  • [46] Visschers V.H.M., Iten D.M., Riklin A., Hartmann S., Sidler X., Siegrist M., Swiss pig farmers’ perception and usage of antibiotics during the fattening period, Livestock Science 2014, 162, 223-232.
  • [47] Pawełczyk A., Muraviev D., Zintegrowana technologia oczyszczania ciekłych odpadów z hodowli trzody chlewnej, Przemysł Chemiczny 2003, 82, 8-9, 2-4.
  • [48] Hu X., Zhou Q., Luo Y., Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from vegetable bases, northern China, Environmental Pollution 2010, 158, 2992-2998.
  • [49] Kane R.L., Johnson P.E., Town R.J., Butler M., A structured review of the effect of economic incentives on consumers ׳ preventive behavior, Am. J. Prev. Med. 2004, 27, 327-352.
  • [50] Hayes E.T., Curran T.P., Dodd V.A., Odour and ammonia emissions from intensive pig units in Ireland, Bioresource Technology 2006, 97, 940-948.
  • [51] Zahn J.A., Hatfield J.L., Do Y.S., DiSpirito A.A., Laird D.A., Pfeiffer R.L., Characterisation of volatile organic emissions and wastes from a swine production facility, Journal of Environmental Quality 1997, 26, 1687-1696.
  • [52] Romain A.C., Nicolas J., Cobut P., Delva J., Nicks B., Philippe F.X., Continuous odour measurement from fattening pig units, Atmospheric Environment 2013, 77, 935-942.
  • [53] Webb J., Broomfield M., Jones S., Donovan B., Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review, Sci. Total Environ. 2014, 470-471, 865-875.
  • [54] Mackie R.I., Stroot P.G., Varel V.H., Biochemical identification and biological origin of key odour components in livestock waste, Journal of Animal Science 1998, 76, 1331-1342.
  • [55] Aneja V.P., Schlesinger W.H., Erisman J.W., Effects of agriculture upon the air quality and climate: research, policy, and regulations, Environ. Sci. Technol. 2009, 43, 4234-4240.
  • [56] Raport syntetyczny, Krajowy bilans emisji SO2, NOX, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 2011-2012 w układzie klasyfikacji SNAP, Warszawa 2014 [on-line], [dostęp 1-03-2014], Dostępny w Internecie: http://www.kobize.pl/materialy/Inwentaryzacje_krajowe/2014/Bilans_emisji-raport_syntetyczny_2012.pdf
  • [57] Lipiec A., Semeniuk W., Krasucki W., Grela E.R., Możliwości ograniczenia wydalania azotu w tuczu świń, Przegląd Hodowlany 2008, 5, 4-6.
  • [58] Bouwman A.F., Booij H., Global use and trade of feedstuffs and consequences for the nitrogen cycle, Nutrient Cycling in Agroecosystems 1998, 52, 261-267.
  • [59] Hayes E.T., Leek A.B.G., Curran T.P., Dodd V.A., Carton O.T., Beattie V.E., O’Doherty J.V., The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses, Bioresource Technology 2004, 91, 309-315.
  • [60] Le P.D., Aarnink A.J.A., Jongbloed A.W., Odour and ammonia emission from pig manure as affected by dietary crude protein level, Livestock Science 2009, 121, 2-3, 267-274.
  • [61] Leek A.B.G., Hayes E.T., Curran T.P., Callan J.J., Beattie V.E., Dodd V.A., O’Doherty J.V., The influence of manure composition on emissions of odour and ammonia from finishing pigs fed different concentrations of dietary crude protein, Bioresource Technology 2007, 98, 3431-3439.
  • [62] Van der Peet-Schwering C.M.C., Aarnink A.J.A., Rom H.B., Dourmad J.Y., Ammonia emissions from pig houses in the Netherlands, Denmark and France, Production Science 1999, 58, 265-269.
  • [63] Marcinkowski T., Emisja gazowych związków z rolnictwa, Woda-Środowisko-Obszary Wiejskie 2010, 10, 3, 31, 175-189.
  • [64] Seedorf J., Hartung J., Survey of ammonia concentrations in livestock buildings, Journal of Agricultural Science 1999, 133, 433-437.
  • [65] Seńczuk W., Toksykologia, PZWL, Warszawa 1994.
  • [66] Portejoie S., Martinez J., Landmann G., Ammonia of farm origin: impact on human and animal health and on the natural habitat, Productions Animales 2002, 15, 151-160.
  • [67] Sapek A., Emisja tlenków azotu (NOx) z gleb uprawnych i ekosystemów naturalnych do atmosfery, Woda Środowisko Obszary Wiejskie 2008, 8, 1, 22, 283-304.
  • [68] Dai X.R., Blanes-Vidal V., Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration, J. Environ. Manage. 2013, 115, 147-154.
  • [69] Takeno N., Atlas of Eh–pH diagrams, Geological survey of Japan, open file report No. 419, National Institute of Advanced Industrial Science and Technology, Ibaraki 2005.
  • [70] Ni J.Q., Heber A.J., Diehl C.A., Lim T.T., Ammonia, hydrogen sulfide and carbon dioxide release from pig manure in under-floor deep pits, J. Agr. Eng. Res. 2000, 77.
  • [71] Patni N.K., Clarke S.P., Transient hazardous conditions in animal buildings due to manure gas released during slurry mixing, Applied Engineering in Agriculture 1991, 7, 478-484.
  • [72] Belgiorno V., Naddeo V., Zarra T., Odour Impact Assessment Handbook, Wiley 2013.
  • [73] Predicala B., Nemati M., Stade S., Laguë C., Control of H2S emission from swine manure using Na-nitrite and Na-molybdate, Journal of Hazardous Materials 2008, 154, 300-309.
  • [74] OCDE, Environmental Indicators for Agriculture, Methods and Results, vol. 3, Paris, France 2001.
  • [75] Nalborczyk E., Łoboda T., Pietkiewicz S., Siudek T., Machnacki M., Sieczko L., Emission of Greenhouse Gases in Polish Agriculture and Possibilities for its Reduction, Part II, Greenhouse Gases Balance in Different Farms Specialised in Crop Production (in Polish), Expert Opinion, SGGW Press, Warsaw 1996.
  • [76] Garnsworthy P.C., The environmental impact of fertility in dairy cows: a modelling approach to predict methane and ammonia emissions, Animal Feed Science and Technology 2004, 112, 211-223.
  • [77] Garnett T., Livestock-related greenhouse gas emissions: impacts and options for policy makers, Environmental Science and Policy, Special Issue: Food Security and Environmental Change, Food Security and Environmental Change: Linking Science, Development and Policy for Adaptation 2009, 12, 4, 491-503.
  • [78] Duxbury J.M., The significance of agricultural sources of greenhouse gases, Fertilizer Research 1994, 38, 151-163.
  • [79] Główny Urząd Statystyczny (GUS), Ochrona Środowiska, Warszawa 2014.
  • [80] O’Mara F.P., The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future, Animal Feed Science and Technology, Special Issue: Greenhouse Gases in Animal Agriculture - Finding a Balance between Food and Emissions 2011, 166-167, 7-15.
  • [81] Murray R.M., Bryant A.M., Leng R.A., Rates of production of methane in rumen and largeintestine of sheep, Br. J. Nutr. 1976, 36, 1-14.
  • [82] Podkówka Z., Podkówka W., Emisja gazów cieplarnianych przez krowy, Przegląd Hodowlany 2011, 3.
  • [83] Gibbs M., Conneely D., Johnson D., Lasse K.R., Ulyatt M.J., CH4 Emissions from enteric fermentation, [In:] Background Papers - IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, The Institute for Global Environmental Strategies, Japan 2002.
  • [84] Angelidaki I., Ellegaard L., Codigestion of manure and organic wastes in centralized biogas plants, Applied Biochemistry and Biotechnology 2003, 109, 95-105.
  • [85] Kroeze C., Mosier A., Bouwman L., Closing the global N2O budget: a retrospective analysis 1500-1994, Global Biogeochemical Cycles 1999, 13, 1-8.
  • [86] Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R., Changes in atmospheric constituents and in radiative forcing [online]. [In:] Climate change 2007: The physical science basis, eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York. 2007 [Dostęp 10.12.2014]. Dostępny w Internecie: http://www.ipcc.ch/pdf/ assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf
  • [87] olomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 [online]. [Dostęp: 08.11.2014]. Dostępny w Internecie: http://www.ipcc.ch/publications_and_data/ar4/ wg1/en/contents.html
  • [88] Chadwick D.R., Pain B.F., Brookman S.K.E., Nitrous oxide and methane emissions following application of animal manures to grassland, J. Environ. Qual. 2000, 29, 277-287.
  • [89] Fangueiro D., Ribeiro H., Coutinho J., Cardenas L., Trindade H., Queda C., Vasconcelos E., Cabral F., Nitrogen mineralization and CO2 and N2O emissions in a sandy soil amended with original and acidified pig slurry or with the relative fractions, Biol. Fertil. Soils 2010, 46, 383-391.
  • [90] Sommer S.G., Petersen S.O., Sogaard H.T., Greenhouse gas emission form stored livestock slurry, J. Environ. Qual. 2000, 29, 744-751.
  • [91] Chadwick D.R., Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering, Atmospheric Environment 2005, 39, 4, 787-799.
  • [92] Hassouna M., Robin P., Charpiot A., Edouard N., Méda B., Photoacoustic spectroscopy in animal houses: Effect of non-compensated interferences on ammonia, nitrous oxide and methane air concentrations, Biosystems Engineering 2013, 114, 3, 318-326.
  • [93] Hutchinson G.L., Davidson E.A., Processes for production and consumption of gaseous nitrogen oxides in soil, [In:] Agricultural Ecosystem Effects on Trace Gases and Global Climate Change 1993, ASA Special Publication No. 55, eds. L.A. Harper, A.R. Mosier, J.M. Duxbury, D.E. Rolston, American Society of Agronomy, Madison, WI, 79-94.
  • [94] Jun P., Gibbs M., Gaffney K., CH4 and N2O emissions from livestock manure, [In:] Background Papers - IPCC Expert Meetings on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
  • [95] Sapek A., Emisja podtlenku azotu z rolnictwa i jej skutki w środowisku, Zesz. Eduk. 2002, 8, 9-22.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fe92cea-af73-4ffa-aca9-f08fde71e7b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.