Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In Kupang Regency, Indonesia, drought occurs almost every year, affecting rice production, which requires a significant amount of water. Despite its frequent occurrence, limited studies have focused on agricultural drought in the region. Therefore, this study aims to analyse the spatial and temporal patterns of agricultural drought and their relationship with rice yield using the Vegetation Health Index (VHI). Spatial and temporal patterns were analysed based on physical conditions, while the relationship with rice yield was examined using the Spearman correlation test. The results showed that the most severe droughts occurred in 2015 and 2019, affecting 15,063 ha and 14,187 ha, respectively. The Receiver Operating Characteristics (ROC) analysis revealed that VHI had an Area Under the Curve (AUC) of 0.732. In addition, agricultural drought had a positive correlation with elevation. The majority of drought occurred in areas with an elevations of 0-25 m a.s.l., alluvial soil types, slopes of 0-8%, and within 0-229 m of water sources. The results also showed that patterns in Kupang Regency closely followed precipitation trends, with a onemonth lag due to soil moisture. However, agricultural drought did not significantly impact productivity, as shown by significance values greater than 0.05.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
185--194
Opis fizyczny
Bibliogr. 44 poz., mapy, tab., wykr.
Twórcy
autor
- Universitas Indonesia, Faculty Mathematics and Natural Sciences, Department of Geography, 16424, Indonesia
autor
- Universitas Indonesia, Faculty Mathematics and Natural Sciences, Department of Geography, 16424, Indonesia
autor
- Universitas Indonesia, Faculty Mathematics and Natural Sciences, Department of Geography, 16424, Indonesia
autor
- Universitas Indonesia, Faculty Mathematics and Natural Sciences, Department of Geography, 16424, Indonesia
autor
- Universitas Indonesia, Faculty Mathematics and Natural Sciences, Department of Geography, 16424, Indonesia
autor
- Universitas Indonesia, Faculty Mathematics and Natural Sciences, Department of Geography, 16424, Indonesia
autor
- Universiti Putra Malaysia (UPM), Faculty of Engineering, Department of Civil Engineering and Geospatial Information Science Research Center (GISRC), 43400, Malaysia
autor
- Universitas Indonesia, Faculty Mathematics and Natural Sciences, Department of Geography, 16424, Indonesia
Bibliografia
- Aghakouchak, A. (2014) “A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought,” Hydrology of Earth System Sciences, 18, pp. 2485–2492. Available at: https://doi.org/10.5194/ hess-18-2485-2014.
- Andri and Priantoro, R.D. (2020) “El Nino 2015: Asosiasinya dengan kekeringan dan dampaknya terhadap curah hujan, luas panen dan produksi padi di Kabupaten Subang [El Nino 2015: Its association with drought and its impact on rainfall, harvested area and rice production in Subang Regency],” Geomedia, 18(2), pp. 132–142. Available at: https://doi.org/10.21831/gm.v18i2.34959.
- Ayu, I.W., Prijono, S. and Soemarno (2013) “Evaluasi ketersediaan air tanah lahan kering di Kecamatan Unter Iwes, Sumbawa Besar [Evaluation of dryland groundwater avaibility in Unter Iwes Subdistrict, Sumbawa Besar],” Jurnal Pembangunan dan Alam Lestari, 4(1), pp. 18–25.
- Bento, V.A. et al. (2020) “The roles of NDVI and land surface temperature when using the vegetation health index over dry regions,” Global and Planetary Change, 190, 103198. Available at: https://doi.org/10.1016/j.gloplacha.2020.103198.
- Bian, Z. et al. (2023) “An angular normalization method for temperature vegetation dryness index (TVDI) in monitoring agricultural drought,” Remote Sensing of Environment, 284, 113330. Available at: https://doi.org/10.1016/j.rse.2022.113330.
- BPS (2023) Produk domestik bruto Indonesia triwulanan 2019–2023 [Quarterly Indonesia gross domestic product 2019–2023]. Jakarta: Badan Pusat Statistik.
- Cahyadi, A., Ayuningtyas, E.A. and Prabawa, B.A. (2013) “Urgensi pengelolaan sanitasi dalam upaya konservasi sumberdaya air di kawasan karst Gunung Sewu Kabupaten Gunungkidul [The urgency of sanitation management in water resource conservation efforts in the karst area of Gunung Sewu],” Indonesian Journal of Conservation, 2(1), pp. 23–32.
- Chere, Z. et al. (2022) “Modeling and mapping the spatiotemporal variation in agricultural drought based on a satellite-derived vegetation health index across the highlands of Ethiopia,” Modelling Earth Systems and Environment, 8, pp. 4539–4552. Available at: https://doi.org/10.1007/s40808-022-01439-x.
- Dimyati, M. et al. (2024) “Environmental and sustainability indicators spatiotemporal relation of satellite-based meteorological to agricultural drought in the downstream Citarum watershed, Indonesia,” Environmental and Sustainability Indicators, 22, 100339. Available at: https://doi.org/10.1016/j.indic.2024.100339.
- Ding, Y. et al. (2021) “Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China,” Agricultural Water Management, 255, 106996. Available at: https://doi.org/10.1016/j.agwat.2021.106996.
- Fand, B.B. et al. (2020) “Invasion risk of the South American tomato pinworm Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in India: Predictions based on MaxEnt ecological niche modelling,” International Journal of Tropical Insect Science, 40(3), pp. 561– 571. Available at: https://doi.org/10.1007/s42690-020-00103-0.
- Hayong, E. (2019). Kecamatan Kupang Timur dan Kecamatan Kupang Tengah terancam kekeringan [East Kupang and Central Kupang Sub-districts threatened by drought]. Available at: https://kupang.tribunnews.com/2019/09/27/kecamatan-kupang-timur-dan-kupang-tengah-terancam-kekeringan (Accessed: May 3, 2024).
- Khotimah, Y.K., Supardi, S. and Antriyandarti, E. (2019) “Pemanfaatan sumber daya pertanian lahan kering di pegunungan karst Gunungkidul [Utilization of dryland agricultural resources in the karst mountains of Gunungkidul],” in Seminar Nasional Dalam Rangka Dies Natalis UNS Ke 43 Tahun 2019 “Sumber Daya Pertanian Berkelanjutan dalam Mendukung Ketahanan dan Keamanan Pangan Indonesia pada Era Revolusi Industri 4.0”,” 3(1), pp. 50–57. Available at: https://www.researchgate.net/publication/342668723_Pemanfaatan_Sumber_Daya_Pertanian_Lahan_Kering_di_Pegunungan_Karst_Gunungkidul (Accessed: July 12, 2024).
- Kimball, S. et al. (2017) “Predicting drought tolerance from slope aspect preference in restored plant communities,” Ecology and Evolution, 7(9), pp. 3123–3131. Available at: https://doi.org/10.1002/ece3.2881.
- Kloos, S. et al. (2021) “Agricultural drought detection with modis based vegetation health indices in southeast Germany,” Remote Sensing, 13(19), pp. 1–24. Available at: https://doi.org/10.3390/rs13193907.
- Kogan, F.N. (1994) “Global drought watch from space,” Bulletin of the American Meteorological Society, 78(4), pp. 621–636. Available at: https://www.star.nesdis.noaa.gov/smcd/emb/vci/WebDataVH/VH_doc/Felix/1997_GlobalDroughtWatch.pdf (Accessed: March 4, 2024).
- Kogan, F.N. (1995a) “Application of vegetation index and brightness temperature for drought detection,” Advances in Space Research, 15(11), pp. 91–100. Available at: https://doi.org/10.1016/0273-1177(95)00079-T.
- Kogan, F.N. (1995b) “Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data,” Bulletin-America Meteorology Society, 76(5), pp. 655–668. Available at: https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2.
- Krisnayanti, D.S., Pasoa, M.S. and Cornelis, R. (2023) “Analisis kekeringan meteorologi dengan menggunakan metode standardized precipitation index di Kupang – Nusa Tenggara Timur [Analysis of meteorological drought with standardized precipitation index in Kupang – East Nusa Tenggara],” Jurnal Sumber Daya Air, 19(1), pp. 1–12. Available at: https://doi.org/10.32679/jsda.v19i1.793.
- Kumbula, S.T. et al. (2019) “Using Sentinel-2 multispectral images to map the occurrence of the cossid moth (Coryphodema tristis) in Eucalyptus nitens plantations of Mpumalanga, South Africa,” Remote Sensing, 11(3), 278. Available at: https://doi.org/10.3390/rs11030278.
- Kushartono, E.W. (2009) “Beberapa aspek Bio-Fisik kimia tanah di daerah mangrove desa Pasar Banggi Kabupaten Rembang [Some bio-physical aspects of soil chemistry in mangrove area of Pasar Banggi village, Rembang Regency],” Jurnal Ilmu Kelautan: Indonesian Journal of Marine Sciences, 14(2), pp. 76–83. Available at: https://doi.org/10.14710/ik.ijms.14.2.76-83.
- Ledoh, L.Y., Satria, A. and Hidayat, R. (2019) “Livelihoods vulnerability of communities in coastal city to climate variability (case study in Kupang City),” Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan, 9(3), pp. 758–770. Available at: https://doi.org/10.29244/jpsl.9.3.758-770.
- Lestari, S.W., Simpen, I.N. and Setiyoko, A. (2021) “Analisis awal musim hujan untuk penentuan waktu tanam padi di Kabupaten Jembrana [Analysis of the beginning of the rainy season for determining rice planting time in Jembrana Regency],” Buletin Fisika, 24(2), 69. Available at: https://doi.org/10.24843/bf.2023.v24.i02.p01.
- Lu, J., Carbone, G.J. and Gao, P. (2017) “Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014,” Agricultural and Forest Meteorology, 237–238, pp. 196–208. Available at: https://doi.org/10.1016/j.agrformet.2017.02.001.
- Luqman, A.D., Wiyono, R.A. and Hidayah, E. (2022) “Akurasi pemetaan kekeringan lahan pertanian menggunakan metode normalized difference drought index (NDDI) di Kecamatan Wuluhan dan Rambipuji Jember [Accuracy of framland drought mapping using the normalized difference drought index (NDDI) method in Wuluhan and Rambipuji Districts of Jember],” in Pertemuan Ilmiah Tahunan HATHI Ke-38, X(January), pp. 111–120. Available at: https://repository.unej.ac.id/xmlui/bitstream/handle/123456789/107209/TEKNIK_JURNAL_EntinHidayah_Akurasi%20Pemetaan%20Kekeringan%20Lahan%20Pertanian%20Menggunakan%20Metode%20Normalized%20Difference%20Drought%20Index%20%28NDDI%29%20di%20Kecamatan%20Wuluhan%20dan%20Rambipuji%20Jember.pdf?sequence=1&isAllowed=y (Accessed: July 11, 2024).
- Mauboy, R.E., Prasetyo, S.Y.J. and Fibriani, C. (2019) “Identifikasi sebaran tanaman pangan Kabupaten Kupang menggunakan citra satelit Landsat 8 [Identification the distribution of food crops in Kupang Regency using Landsat 8 satellite imagery],” Indonesian Journal of Modeling and Computing, 2(1), pp. 42–48. Available at: https://ejournal.uksw.edu/icm/article/view/2540 (Accessed: January 3, 2024).
- Muta’ali, L. (2019) Dinamika peran sektor pertanian dalam pembangunan wilayah di Indonesia [Dynamics of the role of the agricultural sector in regional development in Indonesia]. Yogyakarta: UGM PRESS.
- Naisumu, M.F., Sunimbar and Manek, A.H. (2022) “Pengaruh tingkat produktivitas hasil tani padi terhadap kondisi ekonomi di Desa Benu Kecamatan Takari Kabupaten Kupang [The influence of rice farming productivity levels on economic conditions in Benu Village, Takari District, Kupang Regency],” Jurnal Geografi, 18, pp. 142–152. Available at: https://www.smkn2singaraja.sch.id/index.php/jgeo/article/view/9411/4585 (Accessed: July 11, 2024).
- Pattipeilohy, W.J., Beis, D.S. and Hadi, A.S. (2022) “Kajian identifikasi penurunan tren curah hujan, CDD dan CWD di Kota Kupang, Nusa Tenggara Timur [Study on identification of declining trends in rainfall, CDD and CWD in Kupang City, East Nusa Tenggara],” Buletin GAW Bariri, 3(1), pp. 8–16. Available at: https://doi.org/10.31172/bgb.v3i1.62.
- Perlambang, Y.A., Suharyadi, R. and Jatmiko, R.H. (2021) “Pemanfaatan citra Sentinel 2 untuk memprediksi sebaran hama wereng cokelat di Sebagian Wilayah Kabupaten Pangandaran [Utilization of Setinel 2 imagery to predict the distribution of brown planthopper pests in parts of Pangandaran District],” Jurnal Sosial Teknologi, 1(8), pp. 848–855. Available at: https://doi.org/10.59188/jurnalsostech.v1i8.171.
- Purnomo, D. and Utami, P.N. (2019) “Analisis produksi padi di Indonesia [Analysis of rice production in Indonesia],” Proceeding of The URECOL, pp. 224–230. Available at: https://www.repository.urecol.org/index.php/proceeding/article/view/538/526 (Accessed: January 6, 2024).
- Purwanto, A. (2023) “Kader Partai Gelora Indonesia di Pati Distribusikan 77 Tangki Air Bersih untuk 7 Kecamatan Terdam-pak Kekeringan [Gelora Indonesia Party Cadres in Pati Distribute 77 Tanks of Clean Water to 7 Districs Affected by Drought],” Journal of Community Service and Engagement, 3(5), pp. 12–16. Available at: http://jocosae.org/index.php/jocosae/article/view/180 (Accessed: July 11, 2024).
- Quinn, W.H. et al. (1978) “Southern oscillation, El Nino, and Indonesian droughts,” Fishery Bulletin, 76(663), pp. 663–668.
- 34. Sandy, I.M. (1997) Geografi regional Indonesia [Regional geography of Indonesia]. Jakarta: Puri Margasari.
- Sinaga, Y.K.L. (2022) “Relationship between rice plants (Oryza sativa L.) and corn plants (Zea mays L.) based on root, stem and leaf morphological characteristic approach,” in Seminar Nasional Biologi dan Pembelajarannya, Makassar 22 July 2022, pp. 356–366.
- Sun, B. et al. (2020) “Comparison and evaluation of remote sensing indices for agricultural drought monitoring over Kazakhstan,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43(B3), pp. 899–903. Available at: https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-899-2020.
- Surmaini, E. et al. (2015) “Early detection of drought impact on rice paddies in Indonesia by means of Niño 3.4 index,” Theoretical and Applied Climatology, 121(3–4), pp. 669–684. Available at: https://doi.org/10.1007/s00704-014-1258-0.
- Virtriana, R. et al. (2022) “Development of spatial model for food security prediction using remote sensing data in West Java, Indonesia,” ISPRS International Journal of Geo-Information, 11(5), 284. Available at: https://doi.org/10.3390/ijgi11050284.
- Wang, M. et al. (2020) “Spatiotemporal variation of NDVI in the vegetation growing season in the source region of the Yellow River, China,” ISPRS International Journal of Geo-Information, 9(4), 282. Available at: https://doi.org/10.3390/ijgi9040282.
- Wang, Y. et al. (2021) “Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors,” Agricultural and Forest Meteorology, 306, 108468. Available at: https://doi.org/10.1016/j.agrformet.2021.108468.
- Wu, H., Qian, H. and Chen, J. (2017) “Assessment of agricultural drought vulnerability in the Guanzhong Plain, China,” Water Resources Management, pp. 1557–1574. Available at: https://doi.org/10.1007/s11269-017-1594-9.
- Yildirak, K. and Selcuk-Kestel, A.S. (2015) “Adjusting SPI for crop specific agricultural drought,” Environmental and Ecological Statistics, 22(4), pp. 681–691. Available at: https://doi.org/10.1007/s10651-015-0326-7.
- Zhang, L. et al. (2017) “Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices,” Remote Sensing of Environment, 190, pp. 96–106. Available at: https://doi.org/10.1016/j.rse.2016.12.010.
- Zhang, X. et al. (2017) “Remote sensing of environment multi-sensor integrated framework and index for agricultural drought monitoring,” Remote Sensing of Environment, 188, pp. 141–163. Available at: https://doi.org/10.1016/j.rse.2016.10.045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fe914eb-15c7-48d1-98af-9392bda0a616
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.