PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of room and luminaire characteristics on general lighting in interiors

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
General lighting is the most common way of illuminating interiors and the source of electricity consumption in buildings. This fact forces the search for lighting solutions effective both for people and the environment. In this study the impact of room and luminaire characteristics on general lighting conditions and energy efficiency in interiors is considered. In rooms of different sizes and reflectances, seventeen luminaire types with various light distributions were arranged in uniform layouts. The levels of average illuminance, uniformity and normalised power density related to two horizontal working planes were calculated. The impact of working plane reduction, room index and reflectances, lighting class and luminous intensity distribution of luminaire on the considered parameters was investigated. The use of the reduced working plane resulted in the increase in the average illuminance (7.7% on average), uniformity (33% on average) and normalised power density (23% on average). The impact of the room index and lighting class on the average illuminance and normalised power density was significant while the impact of the luminaire luminous intensity distribution and room reflectances was low. The normalised power density levels of the general electric lighting in interiors, with luminaire luminous efficacy of 100 lm/W, are in the following range: 1.08‒3.42 W/m2 per 100 lx. Based on these results a normalised power density level of 2 W/m2 per 100 lx is recommended for designing and assessing the new general electric lighting systems in buildings.
Rocznik
Strony
447--457
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical Engineering, Electrical Power Engineering Institute Lighting Technology Division, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
  • [1] EIA, International Energy Outlook 2016, EIA, 2016.
  • [2] IEA, World Energy Outlook 2016, IEA, 2016.
  • [3] L. Halonen, E. Tetri, and P. Bhusal, IEA Annex 45, Guidebook on Energy Efficient Electric Lighting for Buildings, Aalto University, Espoo, 2010.
  • [4] IESNA, Illuminating Engineering Society, The Lighting Handbook, Tenth Edition: Reference & Application, IESNA, New York, 2011.
  • [5] C. Cuttle, “A new direction for general lighting practice”, Light. Res. Technol. 45(1), 22‒39 (2013).
  • [6] P. Mandal, D. Dey, and B. Roy, “Optimization of Luminaire Layout to Achieve a Visually Comfortable and Energy-Efficient Indoor General Lighting Scheme by Particle Swarm Optimization”, Leukos. Published online: 02 May (2019).
  • [7] A. Nardelli, E. Deuschle, L. Dalpaz de Azevedo, J.L. Novaes Pessoa, and E. Ghisi, “Assessment of Light Emitting Diodes technology for general lighting: A critical review”, Renew. Sust. Energ. Rev. 75, 368‒379 (2017).
  • [8] CIBSE, Code for lighting, Butterworth-Heinemann, Oxford, 2002.
  • [9] Q. Dai, Y. Huang, L. Hao, Y. Lin, and K. Chen, “Spatial and spectral illumination design for energy-efficient circadian lighting”, Build. Environ. 146, 216‒225 (2018).
  • [10] Y.A.W. de Kort and J.A. Veitch, “From blind spot into the spotlight: Introduction to the special issue Light, lighting, and human behaviour”, J. Environ. Psychol. 39, 1‒4 (2014).
  • [11] A. Kumar, V. Kumar Kuppusamy, M. Holuszko, S. Song, and A. Loschiavo, “LED lamps waste in Canada: Generation and characterization”, Resour. Conserv. Recycl. 146, 329‒336 (2019).
  • [12] D. Siap, C. Payne, and A. Lekov, “The United States Federal Energy Management Program lighting energy efficiency 2017 update and impacts”, Appl. Energy 233–234, 99‒104 (2019).
  • [13] A. Tsangrassoulis and D.H.W. Li, “Energy efficient lighting strategies in buildings”, Energy Build. 165, 284‒285 (2018).
  • [14] S. Yoomak and A. Ngaopitakkul, “Optimisation of lighting quality and energy efficiency of LED luminaires in roadway lighting systems on different road surfaces”, Sustain. Cities Soc. 38, 333‒347 (2018).
  • [15] M. Beccali, M. Bonomolo, V. Lo Brano, G. Ciulla, V. Di Dio, F. Massaro, and S. Favuzza, “Energy saving and user satisfaction for a new advanced public lighting system”, Energy Convers. Manag. 195, 943‒957 (2019).
  • [16] P. Boyce, Human Factors in Lighting, 3rd ed., CRC Press Taylor & Francis Group, Boca Raton, 2014.
  • [17] P. Boyce, “Editorial: Exploring human-centric lighting”, Light. Res. Technol. 48(2), 101 (2016).
  • [18] K.W. Houser, “Human Centric Lighting and Semantic Drift”, Leukos. 14(4), 213‒214 (2018).
  • [19] ANSI/ASHRAE/IES, Standard 90.1‒2016, Energy Standard for Buildings Except Low-Rise Residential Buildings, ASHRAE, 2016.
  • [20] European Standard EN 15193:2010, Energy performance for buildings – Energy requirements for lighting, CEN, 2007.
  • [21] P. Pracki, Energy efficiency evaluation system for interior and road lighting, Oficyna Wydawnicza Politechniki Warszawskiej (OWPW), Warsaw, 2012 [in Polish].
  • [22] Z. Zhao, H. Zhang, S. Liu, and X. Wang, “Effective freeform TIR lens designed for LEDs with high angular color uniformity”, Appl. Opt. 57(15), 4216‒4221 (2018).
  • [23] X Wang and J-PMG Linnartz, “Intelligent illuminance control in a dimmable LED lighting system”, Light. Res. Technol. 49(5), 603‒617 (2016).
  • [24] S. Słomiński, “Advanced modelling and luminance analysis of LED optical systems”, Bull. Pol. Ac.: Tech., 67(6), 1107‒1116 (2019).
  • [25] L.T. Doulos, A. Kontadakis, E.N. Madias, M. Sinou, and A. Tsangrassoulis, “Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems”, Energy Build. 24, 201‒217 (2019).
  • [26] E. Dikel, G.R. Newsham, H. Xue, and J. Valdés, “Potential energy savings from high-resolution sensor controls for LED lighting”, Energy Build. 158, 43‒53 (2018).
  • [27] T. van de Werff, H. van Essen, and B. Eggen, “The impact of the internet of lighting on the office lighting value network”, J. Ind. Inf. Integr. 11, 29‒40 (2018).
  • [28] European Standard EN 12464‒1:2011, Light and lighting – Lighting of work places – Part 1: Interior work places, CEN, 2011.
  • [29] P. Pracki and U. Błaszczak, “The issues of interior lighting on the example of an educational building adjustment to nZEB standard”, 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4), 1‒6, 2016.
  • [30] S. Słomiński and R. Krupiński, “Luminance distribution projection method for reducing glare and solving object-floodlighting certification problems”, Build. Environ. 134, 87‒101 (2018).
  • [31] S. Zalewski and P. Pracki, “Concept and implementation of adaptive road lighting concurrent with vehicles”, Bull. Pol. Ac.: Tech. 67(6), 1117‒1124 (2019).
  • [32] N. Makaremi, S. Schiavoni, A.L. Pisello, F. Asdrubali, and F. Cotana, “Quantifying the effects of interior surface reflectance on indoor lighting”, Energy Procedia. 134, 306‒316 (2017).
  • [33] N. Makaremi, S. Schiavoni, A.L. Pisello, and F. Cotana, “Effects of surface reflectance and lighting design strategies on energy consumption and visual comfort”, Indoor Built Environ. 28(4), 552‒563 (2019).
  • [34] R.A. Mangkuto, “Validation of DIALux 4.12 and DIALux evo 4.1 against the Analytical Test Cases of CIE 171:2006”, Leukos. 12(3), 139‒150 (2016).
  • [35] B. Mattoni, P. Gori, and F. Bisegna, “A step towards the optimization of the indoor luminous environment by genetic algorithms”, Indoor Built Environ. 26(5), 590‒607 (2015).
  • [36] G. Lowry, “Energy saving claims for lighting controls in commercial buildings”, Energy Build. 133, 489‒497 (2016).
  • [37] A. de Vries, J.L. Souman, B. de Ruyter, I. Heynderickx, and Y.A.W. de Kort, “Lighting up the office: The effect of wall luminance on room appraisal, office workers’ performance, and subjective alertness”, Build. Environ. 142, 534‒543 (2018).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fe16266-3f22-4bc9-b581-8a355db2649e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.