PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Characterization of nanoporous nickel-based films on electrode materials for hydrogen evolution, fabricated by dealloying technique

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Charakterystyka nanoporowatych warstw niklowych na elektrodach do wydzielania wodoru, wytwarzanych na drodze selektywnego ługowania
Języki publikacji
EN
Abstrakty
EN
Nanoporous nickel-based films, with a thickness of several μm have been fabricated on Ni substrate by electrodeposition of zinc, heat treatment of modified Zn-rich layer and by selective leaching of the active zinc metal from the electrode material substrate. The fabrication process involved three steps: (i) cathodic deposition of zinc on Ni substrate, (ii) heat treatment process of the surface layer and (iii) dealloying of zinc in alkaline solution on the electrochemical route. SEM and EDS analyses were carried out after each step of the fabrication process. The dealloyed film displays a porous structure with an average pore size of the order of 0.94μm. The electrocatalytic activity of the fabricated surface towards hydrogen evolution reaction (HER) was evaluated by cathodic polarization measurements and the results have been compared to these of pure nickel and commercial porous nickel foam surface. It has been concluded that the nanoporous nickel films fabricated by electrochemical dealloying revealed considerably higher electrocatalytic activity for HER process.
PL
Nanoporowate, warstwy na baize niklu, o grubościach kilku μm wytwarzano na podłożach niklowych poprzez elektroosadzanie cynku, obróbkę cieplną zmodyfikowanych warstw wzbogaconych cynkiem i przez selektywne ługowanie cynku z wytworzonych warstw powierzchniowych. Proces wytwarzania składał się z trzech etapów: (i) katodowego osadzania cynku na podlożu niklowym, (ii) obróbki cieplnej warstwy powierzchniowej i (iii) selektywnego wytrawiania cynku w roztworze alkalicznym na drodze elektrochemicznej. Po każdym etapie procesu wytwarzania przeprowadzano analize SEM i EDS zmodyfikowanej powierzchni. Wyługowane warstwy wykazują porowatą structure z średnimi rozmiarami porów na poziomie 0.94μm. Elektroaktywność katalityczną zmodyfikowanej powierzchni w odniesieniu do reakcji wydzielania wodoru oceniano w pomiarach katodowej polaryzacji a wyniki porównano dla podłoży czystego niklu i komercyjnego, porowatego niklu gąbczastego. Stwierdzono, że nanoporowate warstwy niklowe wytwarzane poprzez selektywne ługowanie wykazywały znacząco wyższą elektroaktywność katalityczną w odniesieniu do reakcji wydzielania wodoru.
Rocznik
Tom
Strony
134--139
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
  • Materials Science Department, German University in Cairo, 11835 New Cairo, Egypt
  • Department of Metallurgy, Faculty of Engineering, Cairo University, 12613 Giza, Egypt
Bibliografia
  • [1] Y. Yang, H. Yang, C. Liang, and X. Zhu. 2018. “Synthesis and characterization of Ni-Co electrocatalyst for hydrogen evolution reaction in acidic media”. International Journal of Electrochemical Science 13 (7) : 7193–7205.
  • [2] A. I. Carim, F. H. Saadi, M. P. Soriaga, and N. S. Lewis. 2014. “Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films”. Journal od Materials Chemistry A 34 13835–13839.
  • [3] J. Greeley, J.K. Norskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb. 2006. “Hydrogen Evolution over Bimetallic Systems: Understanding the Trends”. ChemPhysChem 7 : 1032-1035.
  • [4] L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb. 2004. “Electrocatalysis with Pd monolayers on Au, Pt, Rh, Ir, Ru, Re and PtRu single Crystals”. International Conference on Electrified Interfaces, Spa, Belgium, 11th -16th July, 2004.
  • [5] R. Abdel-karim, S. El-raghy. “Electrochemical Deposition of Nanoporous Metallic Foams for Energy Applications,” Adv. Mater. their Appl. - Micro to nano scale : 69–91.
  • [6] J. M. Jakšić, M. V. Vojnović, and N. V. Krstajić. 2000. “Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes”. Electrochimica. Acta 45 (25–26) : 4151–4158.
  • [7] N. Pentland, J. O. Bockris, and E. Sheldon. 2007. “Hydrogen Evolution Reaction on Copper, Gold, Molybdenum, Palladium, Rhodium, and Iron”. Journal of the Electrochemical Society 104 (3) : 182, 2007.
  • [8] L.A. Kibler, A.M. El-Aziz, D.M. Kolb. 2004. “Hydrogen evolution on Pd overlayers”. 55th Annual Meeting of the International Society of Electrochemistry, Thessaloniki, Greece, 19th -24th Nov. 2004.
  • [9] Sandra Erfan El-Dera, Ahmed Abd El Aziz, Ahmed Abd El Moneim. 2012. “Evaluation of the Activity of Metal-Oxides as Anode Catalysts in Direct Methanol Fuel Cell”. Proceedings of the 10th Fuel Cell Science, Engineering and Technology Conference, San Diego, California, USA, July 23rd -26th, 2012.
  • [10] A. Lasia and A. Rami. 1990. “Kinetics of hydrogen evolution on nickel electrodes”. Journal of the Electroanalytical Chemistry 294 (1–2) : 123–141.
  • [11] I. Flis-Kabulska. 2019. “Electrodeposits of nickel with reduced graphene oxide (Ni/rGO) and their enhanced electroactivity towards hydrogen evolution in water electrolysis”. Materials Chemistry and Physics 241 : 122316.
  • [12] F. Safizadeh, E. Ghali, and G. Houlachi. 2015. “Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A Review”. International Journal of Hydrogen Energy 40 (1) : 256–274.
  • [13] J. Lu, T. Xiong, W. Zhou, L. Yang, Z. Tang, and S. Chen. 2016. “Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials”. ACS Applied Materials & Interfaces 8 (8) : 5065–5069.
  • [14] Y. Ding, Z. Zhang. 2016. Nanoporous metals for advanced energy technologies. Springer.
  • [15] E. Luther, B. Tappan, A. Mueller, B. Mihaila, A. Cardenas, P. P. H Volz, J. Veauthier, and M. Stan. 2007. “Nanostructured Metal Foams: Synthesis and Applications”. 6589–6594.
  • [16] A.J.Forty. 1979. “Corrosion micromorphology of noble metal alloys and depletion gilding”. Nature 82 : 597–598.
  • [17] J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki. 2001. ”Evolution of nanoporosity in dealloying”. Nature 410 (6827) : 450–453.
  • [18] H. Park, C. Ahn, H. Jo, M. Choi, D. S. Kim, D. K. Kim, S. Jeon, and H. Choe. 2014. “Large-area metal foams with highly ordered sub-micrometer- -scale pores for potential applications in energy areas”. Materials Letters 129 : 174–177.
  • [19] K. Nishio and H. Masuda. 2011. “Anodization of gold in oxalate solution to form a nanoporous black film”. Angewandte Chemie - International Edition 50 (7) : 1603–1607.
  • [20] O. Nath, A. Stephen, J. Rosler, and F. Vollertsen. 2009. “Structuring of nanoporous nickel-based superalloy membranes via laser etching”. Journal of Materials Processing Technology 209 (10): 4739–4743.
  • [21] M. Dymek, J. Gega, P. Pawlik, and H. Bala. 2020. “ScienceDirect Preferential alkaline leaching of amphoteric elements from super-stoichiometric hydrogen storage alloy”. International Journal of Hydrogen Energy 45 (24) : 13387–13397.
  • [22] J. Cai, J. Xu, J. Wang, L. Zhang, H. Zhou, Y. Zhong, D. Chen, H. Fan, H. Shao, J. Zhang, and C. N. Cao. 2013.“Fabrication of three-dimensional nanoporous nickel films with tunable nanoporosity and their excellent electrocatalytic activities for hydrogen evolution reaction”. International Journal of Hydrogen Energy 38 (2) : 934–941.
  • [23] A. Khor, P. Leung, M. R. Mohamed, C. Flox, Q. Xu, L. An, R. G. A. Wills, J. R. Morante, and A. A. Shah. 2018. “Review of zinc-based hybrid flow batteries: From fundamentals to applications”. Materials Today Energy (8) : 80–108.
  • [24] R. Y. Wang, D. W. Kirk, and G. X. Zhang. 2007. “Characterization and Growth Mechanism of Filamentous Zinc Electrodeposits”. ECS Transactions 2 (16) : 19–27.
  • [25] Aleksandra Gavrilović-Wohlmuther, Andreas Laskos, Christian Zelger, Bernhard Gollas, and Adam Harding Whitehead. 2015. “Effects of Electrolyte Concentration, Temperature, Flow Velocity and Current Density on Zn Deposit Morphology”. Journal of Energy and Power Engineering 9 : 1019-1928.
  • [26] A. Katagiri and M. Nakata 2003. “Preparation of a High Surface Area Nickel Electrode by Alloying and Dealloying in a ZnCl[sub 2]-NaCl Melt”. Journal of The Electrochemical Society 150 (9) : C585.
  • [27] Y. Ko and S. M. Park. 2012. “Zinc oxidation in dilute alkaline solutions studied by real-time electrochemical impedance spectroscopy”. The Journal of the Physical Chemistry C 116 (13 ): 7260–7268.
  • [28] S. L. Medway, C. A. Lucas, A. Kowal, R. J. Nichols, and D. Johnson. 2006. “In situ studies of the oxidation of nickel electrodes in alkaline solution”. Journal of the Electroanalytical Chemistry 587 (1) : 172–181.
  • [29] S. Klaus, Y. Cai, M. W. Louie, L. Trotochaud, and A. T. Bell. 2015. “Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity” The Journal of the Physical Chemistry 119 (13) : 7243–7254.
  • [30] T. P. Dirkse 1978. “The Behavior of the Zinc Electrode in Alkaline Solutions”. Journal of The Electrochemical Society 125 (10) : 1591.
  • [31] E. Rouya, J. J. Mallett, P. Salvi, M. Villa, M. Begley, R. G. Kelly, M. Reed, and G. Zangari. 2010. “Nanoporous Nickel by Electrochemical Dealloying”. Transactions of the Materials Research Society of Japan 26 : 23–26.
  • [32] I. Herraiz-Cardona, E. Ortega, L. Vazquez-Gomez, and V. Perez-Herranz. 2011. “Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation”. International Journal of Hydrogen Energy 36 (18) 11578–11587.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fe0a86c-e440-478a-bd4b-d59b97d742af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.