PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fuzzy logic-based multi-sensor diagnostic system for traction motor bearings in railway applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
DOI: 10.20858/tp.2025.20.2.06 Keywords: traction motor bearings; fault diagnosis; fuzzy products; linguistic variables; expert system Heybatulla AHMADOV1, Elshan MANAFOV2*, Huseyngulu GULIYEV3, Farid HUSEYNOV4 A fuzzy logic-based multi-sensor diagnostic system for traction motor bearings in railway applications This article focuses on the diagnosis of the bearings of the traction motors of electric railway and subway trains. One of the main sources of mechanical failures in a traction motor is its bearings. The failure of traction motor bearings, the factors that cause these failures, and the diagnostic methods for detecting them are investigated. At this time, faults in traction motor bearing monitoring systems are determined only by temperature. In this work, it is proposed to use a system with temperature, vibration, and noise to determine the technical condition of bearings. Such a multi-parameter system, unlike traditional ones, will help determine specific defects at an early stage. The expert system’s model, based on fuzzy logic and diagnostic parameters, can accurately predict the likelihood of bearing faults in real-time under changing operating conditions. A fuzzy expert system represents knowledge in the form of fuzzy productions and linguistic variables. The expert system model was developed using the Mamdani fuzzy inference algorithm of the Fuzzy Logic Toolbox package in the MATLAB computing environment. The application of fuzzy logic in generating a knowledge base and inference processes enables the formalization of a process for evaluating technical conditions based on incomplete, faulty, and potentially erroneous information and for making decisions about fault identification.
Czasopismo
Rocznik
Strony
73--84
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Azerbaijan Technical University; H. Javid av. 25, AZ 1073 Baku, Azerbaijan
  • National Aviation Academy; Mardakan av. 30, AZ 1045, Baku, Azerbaijan
  • Azerbaijan Technical University; H. Javid av. 25, AZ 1073 Baku, Azerbaijan
  • National Aviation Academy; Mardakan av. 30, AZ 1045, Baku, Azerbaijan
Bibliografia
  • 1. Siddiqui, K.M. & Sahay, K. & Giri, V.K. Health monitoring and fault diagnosis in induction motor - a review. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. 2014. Vol. 3. No. 1. P. 6549- 6565.
  • 2. Benedik, B. & Rihtarsic, J. & Povh, J. & Tavcar, J. Failure modes and life prediction model for high-speed bearings in a through-flow universal motor. The Journal of Engineering Failure Analysis. 2021. Vol. 128. P. 1-17.
  • 3. Gerdun, V. & Sedmak, T. & Sinkovec, V. et al. Failures of bearings and axles in railway freight wagons. The Journal of Engineering Failure Analysis. 2007. Vol. 14. No. 5. P. 884-894.
  • 4. Guliyev, H.B. & Farkhadov, Z.I. & Mammadov, J.F. System of automatic regulation of reactive power by means of fuzzy logic. Reliability: Theory & Applications. USA, San Diego. 2015. Vol. 10. No.2(37). P.50-58.
  • 5. Hashimov, A.M. & Rahmanov, N.R. & Guliyev, H.B. Criteria for determination of membership function type in fuzzy management of regime parameters of electric network. International Journal on Technical and Physical problems of Engineering (IJTPE). 2016. Vol. 8. No. 28(3). P.32-35.
  • 6. Manafov, E. The use of a fuzzy expert system to increase the reliability of diagnostics of axle boxes of rolling stocks. Scientific Journal of Silesian University of Technology. Series Transport. 2020. Vol. 107. P. 95-106.
  • 7. Saba, E. & Kalwar, I.H. & Unar, M.A. et al. Fuzzy logic-based identification of railway wheelset conicity using multiple model approach. Sustainability. 2021. Vol. 13. No. 10249.
  • 8. Fozia, H. & Farzana, R.A. & Tayab, D. et al. Fuzzy-logic based anti-slip control of commuter train with FPGA implementation. International Journal of Advanced Computer Science and Applications (IJACSA). 2020. Vol. 11. No. 4. P. 293-300.
  • 9. Chellaswamy, C. & Akila, V. & Dinesh Babu, A. & Kalai Arasan, N. Fuzzy logic based railway track condition monitoring system. In: IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICECCN 2013). 2013. P. 250-255.
  • 10. Chen, Y. & Tiejun, Z. Research on the application of fuzzy fault tree analysis method in the machinery equipment fault diagnosis. In: 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Wuhan. 2010. P. 84-87.
  • 11. Chandrabhanu, M. & Isham, P. Review of condition monitoring of rolling element bearing using vibration analysis and other techniques. Journal of Vibration Engineering & Technologies. 2019. Vol. 7. P. 407-414.
  • 12. He, K. & Xu, Y. & Wang, Y. et al. Intelligent diagnosis of rolling bearings fault based on multisignal fusion and MTF-ResNet. Journal of Sensors by MDPI. 2023. Vol. 23. No. 6281.
  • 13. Manafov, E. & Huseynov, F. Application of artificial neuron networks and fuzzy logic in diagnostic and forecasting the technical condition of traction motors. Proceedings of the international research, education & training center, Tallinn, EESTI. 2023. Vol. 27. No. 06. P. 233-239.
  • 14. Gougam, F. & Rahmoune, C. & Benazzouz, D. et al. Health monitoring approach of bearing: application of adaptive neuro fuzzy inference system (ANFIS) for RUL-estimation and autogram analysis for fault-localization. In: Prognostics and Health Management Conference, Besancon, France. 2020. P. 200-206.
  • 15. Samanta, B. & Al-Balushi, K.R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing. 2003. Vol. 17. No. 2. P. 317-328.
  • 16. Tauheed, M. & Anurag, Ch. & Shahab, F. Vibration and infrared thermography based multiple fault diagnosis of bearing using deep learning. Journal of Nondestructive Testing and Evaluation. 2023. Vol. 38. No. 2. P. 275-296.
  • 17. Manafov, E. & Isgandarov, I. & Huseynov, F. Investigating the protection system of electric motors based on its main working parameters. Scientific Journal of Silesian University of Technology. Series Transport. 2022. Vol. 115. P. 63-74.
  • 18. Pang, B. & Tang, G. & Tian, T. & Zhou, C. Rolling bearing fault diagnosis based on an improved HTT transform. Journal of Sensors by MDPI. 2018. Vol. 18. No. 19.
  • 19. Nilesh, W. & Hardik B. Condition monitoring and fault detection in roller bearing used in rolling mill by acoustic emission and vibration analysis. Materials Today: Proceedings. 2022. Vol. 51. P. 344-354.
  • 20. Mohamed, K.B. & Abderrazek, D. & Nouredine, O. et al. Rolling bearing faults severity classification using a combined approach based on multi-scales principal component analysis and fuzzy technique. The International Journal of Advanced Manufacturing Technology. 2020. Vol. 107. P. 4301-4316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fdeb6c8-dd5e-4865-91df-e696bdc7a98d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.