PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Framework of QLCA model considering quality and life cycle assessment to sustainable product development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article was to develop a QLCA framework model dedicated to the design and improvement of products, taking into account their quality (Q) and environmental impact in the life cycle (LCA). Design/methodology/approach: A review of the literature on the subject was conducted on studies from the Web of Science database. The thematic scope included the design and improvement of products, taking into account quality and environmental impact during the life cycle (LCA). Bibliometric and frequency techniques were used, including keyword analysis and citation of studies. Based on conclusions from the literature, approaches and methods for quality improvement, as well as the LCA methodology presented in the ISO 14040 standard, a QLCA framework model was developed. The model supports the prospective assessment of the quality and life cycle of the product and its prototypes in terms of sustainable development. Findings: It has been shown that there are no solutions that present the links between product life cycle assessment and product quality assessment, including preparing these assessments for product prototypes at the design and prototyping stage. Research limitations/implications: A QLCA framework model is presented, the proper form of which will be provided by future research. The framework conditions of the QLCA model were improved and expanded in order to find the most advantageous approach to achieving the highest quality product quality with the lowest possible negative environmental impact of this product in LCA in terms of its sustainable development. Practical implications: The QLCA framework model is the result of conceptual generalisation, and its assumptions were prepared for designers and R&D departments. The assumptions of the QLCA methodology can be used by management staff to make decisions about product improvement at the prototyping stage. Originality/value: A novelty is the QLCA framework model, which presents an original approach to product improvement at the prototyping stage, taking into account customer expectations regarding their quality and at the same time assessing the life cycle of these prototypes.
Rocznik
Tom
Strony
49--66
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Faculty of Materials Engineering, Department of Industrial Informatics, Silesian University of Technology
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
Bibliografia
  • 1. Adriyanti, A.L., Sahroni, T.R. (2023). Design Sustainability for Battery Packaging to Increase Customer Satisfaction. Journal of Engineering, 1-12. https://doi.org/10.1155/2023/9916084.
  • 2. Alvarenga, R.A.F., Dewulf, J., Guinée, J., Schulze, R., Weihed, P., Bark, G., Drielsma, J. (2019). Towards product-oriented sustainability in the (primary) metal supply sector. Resources, Conservation and Recycling, 145, 40-48. https://doi.org/10.1016/ j.resconrec.2019.02.018.
  • 3. Antony, F., Grießhammer, R., Speck, T., Speck, O. (2016). The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®. Beilstein Journal of Nanotechnology, 7, 2100-2115. https://doi.org/10.3762/bjnano.7.200.
  • 4. Barecka, M.H., Zbicinski, I., Heim, D. (2016). Environmental, energy and economic aspects in a zero-emission façade system design. Management of Environmental Quality: An International Journal, 27(6), 708-721. https://doi.org/10.1108/MEQ-05-2015-0105.
  • 5. Berglund, L., Breedveld, L., Oksman, K. (2020). Toward eco-efficient production of natural nanofibers from industrial residue: Eco-design and quality assessment. Journal of Cleaner Production, 255, 120274. https://doi.org/10.1016/j.jclepro.2020.120274.
  • 6. Cabot, M.I., Luque, A., de las Heras, A., Aguayo, F. (2019). Aspects of sustainability and design engineering for the production of interconnected smart food packaging. PLOS ONE, 14(5), e0216555. https://doi.org/10.1371/journal.pone.0216555.
  • 7. Chan, F.T.S., Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35(4), 417-431. https://doi.org/10.1016/j.omega.2005.08.004.
  • 8. Chevalier, J.L., Le Téno, J.F. (1996). Requirements for an LCA-based model for the evaluation of the environmental quality of building products. Building and Environment, 31(5), 487-491. https://doi.org/10.1016/0360-1323(96)00016-9.
  • 9. Dassisti, M., Semeraro, C., Chimenti, M. (2019). Hybrid Exergetic Analysis-LCA approach and the Industry 4.0 paradigm: Assessing Manufacturing Sustainability in an Italian SME. Procedia Manufacturing, 33, 655-662. https://doi.org/10.1016/j.promfg.2019.04.082.
  • 10. Filleti, R.A.P., Silva, D.A.L., Silva, E.J., Ometto, A.R. (2014). Dynamic System for Life Cycle Inventory and Impact Assessment of Manufacturing Processes. Procedia CIRP, 15, 531-536. https://doi.org/10.1016/j.procir.2014.06.024.
  • 11. Gajdzik, B., Jaciow, M., Wolny, R. (2023). Types of E-Consumers and Their Implications for Sustainable Consumption-A Study of the Behavior of Polish E-Consumers in the Second Decade of the 21st Century. Sustainability, 15, 12647. https://doi.org/10.3390/su151612647.
  • 12. Gajdzik, B., Siwiec, D., Wolniak, R., Pacana, A. (2024). Approaching open innovation in customization frameworks for product prototypes with emphasis on quality and life cycle assessment (QLCA). Journal of Open Innovation: Technology, Market, and Complexity, 10(2), 100268. https://doi.org/10.1016/j.joitmc.2024.100268.
  • 13. Grant, T., Barichello, V., Fitzpatrick, L. (2015). Accounting the Impacts of Waste Product in Package Design. Procedia CIRP, 29, 568-572. https://doi.org/10.1016/j.procir. 2015.02.062.
  • 14. Grenz, J., Ostermann, M., Käsewieter, K., Cerdas, F., Marten, T., Herrmann, C., Tröster, T. (2023). Integrating Prospective LCA in the Development of Automotive Components. Sustainability, 15(13), 10041. https://doi.org/10.3390/su151310041.
  • 15. Haber, N., & Fargnoli, M. (2021). Sustainable Product-Service Systems Customization: A Case Study Research in the Medical Equipment Sector. Sustainability, 13(12), 6624. https://doi.org/10.3390/su13126624.
  • 16. Haiyun, C., Zhixiong, H., Yüksel, S., Dinçer, H. (2021). Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach. Renewable and Sustainable Energy Reviews, 143, 110844. https://doi.org/10.1016/j.rser.2021.110844.
  • 17. Hameed, A.Z., Kandasamy, J., Aravind Raj, S., Baghdadi, M.A., Shahzad, M.A. (2022). Sustainable Product Development Using FMEA ECQFD TRIZ and Fuzzy TOPSIS. Sustainability, 14(21), 14345. https://doi.org/10.3390/su142114345.
  • 18. Han, J., Jiang, P., Childs, P. (2021). Metrics for Measuring Sustainable Product Design Concepts. Energies, 14(12), 3469. https://doi.org/10.3390/en14123469.
  • 19. Kaķis, R., Blumberga, D., Vīgants, Ģ. (2020, July 22). Guidlines for Inventors "From Idea to Product". https://doi.org/10.3846/enviro.2020.695.
  • 20. Karaman Öztaş, S. (2018). The Limitations of LCA Methodology Towards Sustainable Construction Materials, pp. 102-113. https://doi.org/10.1007/978-3-319-63709-9_8.
  • 21. Katsiropoulos, C.V., Pantelakis, S.G. (2020). A Novel Holistic Index for the Optimization of Composite Components and Manufacturing Processes with Regard to Quality, Life Cycle Costs and Environmental Performance. Aerospace, 7(11), 157. https://doi.org/10.3390/ aerospace7110157.
  • 22. Kim, B.-Y., Oh, H. (2001). An Extended Application of Importance-Performance Analysis. Journal of Hospitality & Leisure Marketing, 9(3-4), 107-125. https://doi.org/10.1300/ J150v09n03_08.
  • 23. Kimpimäki, J.-P., Malacina, I., Lähdeaho, O. (2022). Open and sustainable: An emerging frontier in innovation management? Technological Forecasting and Social Change, 174, 121229. https://doi.org/10.1016/j.techfore.2021.121229.
  • 24. Kobayashi, Y., Kobayashi, H., Hongu, A., Sanehira, K. (2005). A Practical Method for Quantifying Eco-efficiency Using Eco-design Support Tools. Journal of Industrial Ecology, 9(4), 131-144. https://doi.org/10.1162/108819805775247990.
  • 25. Kulatunga, A.K., Karunatilake, N., Weerasinghe, N., Ihalawatta, R.K. (2015). Sustainable Manufacturing based Decision Support Model for Product Design and Development Process. Procedia CIRP, 26, 87-92. https://doi.org/10.1016/j.procir.2015.03.004.
  • 26. Kulczycka, J., Smol, M. (2016). Environmentally friendly pathways for the evaluation of investment projects using life cycle assessment (LCA) and life cycle cost analysis (LCCA). Clean Technologies and Environmental Policy, 18(3), 829-842. https://doi.org/10.1007/ s10098-015-1059-x.
  • 27. Lewandowska, A., Branowski, B., Joachimiak-Lechman, K., Kurczewski, P., Selech, J., Zablocki, M. (2017). Sustainable Design: A Case of Environmental and Cost Life Cycle Assessment of a Kitchen Designed for Seniors and Disabled People. Sustainability, 9(8), 1329. https://doi.org/10.3390/su9081329.
  • 28. Mrozik, M., Merkisz-Guranowska, A. (2020). Environmental Assessment of the Vehicle Operation Process. Energies, 14(1), 76. https://doi.org/10.3390/en14010076.
  • 29. Neira-Rodado, D., Ortíz-Barrios, M., De la Hoz-Escorcia, S., Paggetti, C., Noffrini, L., Fratea, N. (2020). Smart Product Design Process through the Implementation of a Fuzzy Kano-AHP-DEMATEL-QFD Approach. Applied Sciences, 10(5), 1792. https://doi.org/10.3390/app10051792.
  • 30. Neramballi, A., Sakao, T., Willskytt, S., Tillman, A.-M. (2020). A design navigator to guide the transition towards environmentally benign product/service systems based on LCA results. Journal of Cleaner Production, 277, 124074. https://doi.org/10.1016/j.jclepro. 2020.124074.
  • 31. Pacana, A., Siwiec, D. (2024). Procedure for Aggregating Indicators of Quality and Life-Cycle Assessment (LCA) in the Product-Improvement Process. Processes, 12(4), 811. https://doi.org/10.3390/pr12040811.
  • 32. Pacana, A., Siwiec, D., Bednárová, L., Petrovský, J. (2023). Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA). Processes, 11(9), 2579. https://doi.org/10.3390/pr11092579.
  • 33. Pagone, E., Salonitis, K., Jolly, M. (2020). Automatically weighted high-resolution mapping of multi-criteria decision analysis for sustainable manufacturing systems. Journal of Cleaner Production, 257, 120272. https://doi.org/10.1016/j.jclepro.2020.120272.
  • 34. Palousis, N., Luong, L., Abhary, K. (2008). An integrated LCA/LCC framework for assessing product sustainability risk. Risk Analysis, VI, 121-128. https://doi.org/10.2495/ RISK080131.
  • 35. Piasecka, I., Bałdowska-Witos, P., Piotrowska, K., Tomporowski, A. (2020). Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant. Energies, 13(6), 1385. https://doi.org/10.3390/en13061385.
  • 36. Ponto, J. (2015). Understanding and Evaluating Survey Research. J. Adv. Pract. Oncol., 6(2), 168-171.
  • 37. Popoff, A., Millet, D. (2017). Sustainable Life Cycle Design Using Constraint Satisfaction Problems and Quality Function Deployment. Procedia CIRP, 61, 75-80. https://doi.org/10.1016/j.procir.2016.11.147.
  • 38. Proske, M., Finkbeiner, M. (2020). Obsolescence in LCA-methodological challenges and solution approaches. The International Journal of Life Cycle Assessment, 25(3), 495-507. https://doi.org/10.1007/s11367-019-01710-x.
  • 39. Puglieri, F.N., Ometto, A.R., Salvador, R., Barros, M.V., Piekarski, C.M., Rodrigues, I.M., Diegoli Netto, O. (2020). An Environmental and Operational Analysis of Quality Function Deployment-Based Methods. Sustainability, 12(8), 3486. https://doi.org/10.3390/ su12083486.
  • 40. Romli, A., Prickett, P., Setchi, R., Soe, S. (2015). Integrated eco-design decision-making for sustainable product development. International Journal of Production Research, 53(2), 549-571. https://doi.org/10.1080/00207543.2014.958593.
  • 41. Rosen, M.A., Kishawy, H.A. (2012). Sustainable Manufacturing and Design: Concepts, Practices and Needs. Sustainability, 4(2), 154-174. https://doi.org/10.3390/su4020154
  • 42. Sakao, T. (2007). A QFD-centred design methodology for environmentally conscious product design. International Journal of Production Research, 45(18-19), 4143-4162. https://doi.org/10.1080/00207540701450179.
  • 43. Saniuk, S., Grabowska, S., Gajdzik, B. (2020). Personalization of Products in the Industry 4.0 Concept and Its Impact on Achieving a Higher Level of Sustainable Consumption. Energies, 13, 5895.
  • 44. Segovia, F., Blanchet, P., Amor, B., Barbuta, C., Beauregard, R. (2019). Life Cycle Assessment Contribution in the Product Development Process: Case Study of Wood Aluminum-Laminated Panel. Sustainability, 11(8), 2258. https://doi.org/10.3390/ su11082258.
  • 45. Sever, I. (2015). Importance-performance analysis: A valid management tool? Tourism Management, 48, 43-53. https://doi.org/10.1016/j.tourman.2014.10.022.
  • 46. Shahbazi, S., Kurdve, M., Zackrisson, M., Jönsson, C., Kristinsdottir, A.R. (2019). Comparison of Four Environmental Assessment Tools in Swedish Manufacturing: A Case Study. Sustainability, 11(7), 2173. https://doi.org/10.3390/su11072173.
  • 47. Shen, Y., Zhou, J., Pantelous, A.A., Liu, Y., Zhang, Z. (2022). A voice of the customer real-time strategy: An integrated quality function deployment approach. Computers & Industrial Engineering, 169, 108233. https://doi.org/10.1016/j.cie.2022.108233.
  • 48. Siva, V., Gremyr, I., Bergquist, B., Garvare, R., Zobel, T., Isaksson, R. (2016). The support of Quality Management to sustainable development: a literature review. Journal of Cleaner Production, 138, 148-157. https://doi.org/10.1016/j.jclepro.2016.01.020.
  • 49. Siwiec, D., Pacana, A. (2021). Method of improve the level of product quality. Production Engineering Archives, 27(1), 1-7. https://doi.org/10.30657/pea.2021.27.1
  • 50. Siwiec, D., Pacana, A., Gazda, A. (2023). A New QFD-CE Method for Considering the Concept of Sustainable Development and Circular Economy. Energies, 16(5), 2474. https://doi.org/10.3390/en16052474.
  • 51. Ulewicz, R., Siwiec, D., Pacana, A. (2023). Sustainable Vehicle Design Considering Quality Level and Life Cycle Environmental Assessment (LCA). Energies, 16(24), 8122. https://doi.org/10.3390/en16248122.
  • 52. Vigil, M., Pedrosa-Laza, M., Alvarez Cabal, J., Ortega-Fernández, F. (2020). Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment. Sustainability, 12(17), 7207. https://doi.org/10.3390/su12177207.
  • 53. Wang, J., Liu, H.-C., Shi, H., Guo, W., Zhu, J.-Y. (2023). New approach for quality function deployment based on social network analysis and interval 2-tuple Pythagorean fuzzy linguistic information. Computers & Industrial Engineering, 183, 109554. https://doi.org/10.1016/j.cie.2023.109554.
  • 54. Wang, J., Ranscombe, C., Eisenbart, B. (2023). Prototyping in smart product design: Investigating prototyping tools to support communication in the early stage smart product development. International Journal of Design Creativity and Innovation, 11(3), 159-184. https://doi.org/10.1080/21650349.2023.2222115.
  • 55. Wu, Y., Su, D. (2021). LCA of an industrial luminaire using product environmental footprint method. Journal of Cleaner Production, 305, 127159. https://doi.org/10.1016/j.jclepro.2021.127159.
  • 56. Yamagishi, K., Seki, K., Nishimura, H. (2018). Requirement analysis considering uncertain customer preference for Kansei quality of product. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12(1), JAMDSM0034-JAMDSM0034. https://doi.org/10.1299/jamdsm.2018jamdsm0034
  • 57. Yu, X., Sekhari, A., Nongaillard, A., Bouras, A., Yu, S. (2014). A Sensitivity Analysis Approach to Identify Key Environmental Performance Factors. Mathematical Problems in Engineering, 1-9. https://doi.org/10.1155/2014/918795.
  • 58. Zhou, Z., Cao, Y., Han, X., Zhang, Y. (2023). Evaluation and Prediction of Market Fit for Electric Motor Products Based on QFD and Improved TOPSIS Method. 6th International Conference on Electrical Engineering and Green Energy (CEEGE), 106-113. https://doi.org/10.1109/CEEGE58447.2023.10246731.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fda4cd7-03ef-4770-bf59-35bf1cefd2a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.