Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of chaotic dynamics for error correction is the subject of extensive research, as the approach allows to avoid the use of redundant data. This work proposes a new technique for non-coherent chaos communications for modifying error-correction depending on chaotic dynamics. In the proposed system, there are two consecutive sequences created from a comparable chaotic map, with the second series being created as the latest value of the initial one. Generation of a sequential chaotic sequence with a comparable chaotic dynamic delivers additional information to the receiver, allowing it to appropriately recover information and, hence, facilitate the receiver’s bit-error performance. For error correction and for detecting the symbol that is transmitted, a suboptimal technique based on the nearest distance between chaotic map trajectories over the n-dimensional sequence received is utilized. Simulation results show that the proposed error correction approach improves Eb/N0 as the dimension of the trajectory map increases, indicating that the method improves overall error correction performance. With the dimension of 4, a gain of 0.8 dB in Eb/N0 is achieved compared with an approach without any error-correcting schemes, at the bit-error probability of 10−3.
Słowa kluczowe
Rocznik
Tom
Strony
10--16
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electronics and Communication Engineering, University of Baghdad, Baghdad, Iraq
autor
- College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
autor
- Department of Electrical Engineering, University of Technology, Baghdad, Iraq
Bibliografia
- [1] G. Kolumbán, B. Vizvári, W. Schwarz, and A. Abel, "Differential chaos shift keying: A robust coding for chaos communication", in Proceedings of NDES’96 International Conference, Jan. 1996, pp. 87–92 [Online]. Available https://www.researchgate.net/publication/239666158_Differential_chaos_shift_keying_A_robust_coding_for_chaos_communication.
- [2] M.P. Kennedy and G. Kolumbán, "Digital communications using chaos", Journal of Signal Processing, vol. 80, no. 7, pp. 1307–1320, 2000 https://doi.org/10.1016/S0165-1684(00)00038-4
- [3] M. Hasler and T. Schimming, "Chaos communication over noisy channels", Int. Journal on Bifurcation and Chaos, vol. 10, no. 4, pp. 719–735, 2000 https://doi.org/10.1142/S0218127400000505
- [4] F.C.M. Lau and C.K. Tse, Chaos-Based Digital Communication Systems. Springer, 2003 https://doi.org/10.1007/978-3-662-05183-2
- [5] F.C.M. Lau and C.K. Tse, "Approximate-optimal detector for chaos communication systems", Int. Journal of Bifurcation and Chaos, vol. 13, no. 5, pp. 1329–1335, 2003 https://doi.org/10.1142/S0218127403007266
- [6] W.M. Tam, F.C.M. Lau, and C.K. Tse, "Generalized correlation-delay-shift-keying scheme for noncoherent chaos-based communication systems", IEEE Trans. Circuits and Systems Part I, vol. 53, no. 3, pp. 712–721, 2006 https://doi.org/10.1109/ISCAS.2004.1329075
- [7] L.E. Larson, J-M. Liu, and L.S. Tsimring, Digital Communications Using Chaos and Nonlinear Dynamics. Springer, 2006 https://doi.org/10.1007/0-387-29788-X
- [8] W.M. Tam, F.C. Lau, and K.T. Chi, Digital Communications with Chaos: Multiple Access Techniques and Performance. Elsevier, 2006 https://www.elsevier.com/books/digital-communications-with-chaos/tam/978-0-08-045151-0
- [9] C.P. Silva and A.M. Young, "Introduction to chaos-based communications and signal processing", in Proc. IEEE Aerospace Conference, vol. 1, pp. 279—299 https://doi.org/10.1109/AERO.2000.879402
- [10] P. Stavroulakis, Ed., Chaos Applications in Telecommunications, 1st ed. Boca Raton: CRC Press, 2005 https://doi.org/10.1201/9780203025314
- [11] G. Kaddoum and F. Gagnon, "Error correction codes for secure chaos-based communication system", 25th Biennial Symposium on Communications, Kingston, Canada, 2010, pp. 193–196 https://doi.org/10.1109/BSC.2010.5472918
- [12] U. Parlitz, L.O. Chua, L. Kocarev, K.S. Halle, and A. Shang, "Transmission of digital signals by chaotic synchronization", Int. Journal of Bifurcation Chaos, vol. 2, no. 4, pp. 973–977, 1992 https://doi.org/10.1142/9789812798855_0019
- [13] M. Hasler and T. Schimming, "Optimal and suboptimal chaos receivers", Proceedings of the IEEE, vol. 90, no. 5, pp. 733–746, 2002 https://doi.org/10.1109/JPROC.2002.1015004
- [14] S. Arai, Y. Nishio, and T. Yamazato, "Error-correcting scheme based on chaotic dynamics and its performance for non-coherent chaos communications", Nonlinear Theory and its Applications, IEICE, vol. 1, no. 1, pp. 196–206, 2010 https://doi.org/10.1587/nolta.1.196
- [15] H.N. Abdullah, T.R. Saeed, and A.H. Sahar, "Suboptimal Detection of Modified Logistic Map Based Chaos Shift Keying Modulation", U.P.B. Sci. Bull., Series C, vol. 80, no. 3, 2018 https://www.academia.edu/70642142/Suboptimal_Detection_of_Modified_Logistic_Map_Based_Chaos_Shift_Keying_Modulation
- [16] H.N. Abdullah, T.R. Saeed, and A.H. Sahar, "Efficient error correcting scheme for chaos shift keying signals", IJECE, vol. 9, no 5, pp. 3550–3557, 2019 https://doi.org/10.11591/ijece.v9i5.pp3550-3557
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fd8f58d-c9a2-4e04-90f3-a59df83d1d55