PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wynik贸w
Tytu艂 artyku艂u

Exponential decay of transient values in discrete-time positive nonlinear systems

Tre艣膰 / Zawarto艣膰
Identyfikatory
Warianty tytu艂u
J臋zyki publikacji
EN
Abstrakty
EN
The exponential decay of transient values in discrete-time nonlinear standard and fractional orders systems with linear positive linear part and positive feedbacks is investigated. Sufficient conditions for the exponential decay of transient values in this class of positive nonlinear systems are established. A procedure for computation of gains characterizing the class of nonlinear elements are given and illustrated on simple example.
Rocznik
Strony
577--588
Opis fizyczny
Bibliogr. 21 poz., rys., wzory
Tw贸rcy
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D,15-351 Bia艂ystok, Poland
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D,15-351 Bia艂ystok, Poland
Bibliografia
  • [1] A. Berman and R.J. Plemmons: Nonnegative Matrices in the Mathematical Sciences. SIAM, 1994.
  • [2] L. Farina and S. Rinaldi: Positive Linear Systems; Theory and Applications. J. Wiley, New York, 2000.
  • [3] T. Kaczorek: Absolute stability of a class of fractional positive nonlinear systems. International Journal of Applied Mathematics and Computer Science, 29(1), (2019), 93-98. DOI: 10.2478/amcs-2019-0007.
  • [4] T. Kaczorek: Analysis of positivity and stability of fractional discrete-time nonlinear systems. Bulletin of the Polish Academy of Science. Technical Sciences, 64(3), (2016), 491-494. DOI: 10.1515/bpasts-2016-0054.
  • [5] T. Kaczorek: Exponential decay of transient values in positive nonlinear systems. Bulletin of the Polish Academy of Science. Technical Sciences, (in Press).
  • [6] T. Kaczorek: Global stability of nonlinear feedback systems with fractional positive linear parts. International Journal of Applied Mathematics and Computer Science, 30(3), (2020), 493-500. DOI: 10.34768/amcs-2020-0036.
  • [7] T. Kaczorek: Global stability of positive standard and fractional nonlinear feedback systems. Bulletin of the Polish Academy of Science. Technical Sciences, 68(2), (2020), 285-288. DOI: 10.24425/bpasts.2020.133112.
  • [8] T. Kaczorek: Global stability of nonlinear feedback systems with positive linear parts. International Journal of Nonlinear Sciences and Numerical Simulation, 20(5), (2019), 575-579. DOI: 10.1515/ijnsns-2018-0189.
  • [9] T. Kaczorek: Positive linear systems with different fractional orders. Bulletin of the Polish Academy of Science. Technical Sciences, 58(3), (2010), 453-458. DOI: 10.2478/v10175-010-0043-1.
  • [10] T. Kaczorek: Positive linear systems consisting of 饾憶 subsystems with different fractional orders. IEEE Transactions on Circuits and Systems, 58(7), (2011), 1203-1210. DOI: 10.1109/TCSI.2010.2096111.
  • [11] T. Kaczorek: Selected Problems of Fractional Systems Theory. Springer, Berlin 2011.
  • [12] T. Kaczorek: Stability of fractional positive nonlinear systems. Archives of Control Sciences, 25(4), (2015), 491-496. DOI: 10.1515/acsc-2015-0031.
  • [13] T. Kaczorek and K. Rogowski: Fractional Linear Systems and Electrical Circuits. Springer, Cham 2015.
  • [14] T. Kaczorek and A. Ruszewski: Global stability of discrete-time nonlinear systems with descriptor standard and fractional positive linear parts and scalar feedbacks. Archives of Control Sciences, 30(4), (2020), 667-681. DOI: 10.24425/acs.2020.135846.
  • [15] A.M. Lyapunov: Obscaja zadaca ob ustoicivosti dvizenija. Gostechizdat, Moskov, 1963. In Russian.
  • [16] H. Leipholz: Stability Theory. New York Academic Press, 1970.
  • [17] W. Mitkowski: Dynamical properties of Metzler systems. Bulletin of the Polish Academy of Science. Technical Sciences, 56(4), (2008), 309-312.
  • [18] P. Ostalczyk: Discrete Fractional Calculus. World Scientific, River Edgle, 2016.
  • [19] I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, 1999.
  • [20] A. Ruszewski: Stability of discrete-time fractional linear systems with delays. Archives of Control Sciences, 29(3), (2019), 549-567. DOI: 10.24425/acs.2019.130205.
  • [21] L. Sajewski: Stabilization of positive descriptor fractional discrete-time linear systems with two different fractional orders by decentralized controller. Bulletin of the Polish Academy of Science. Technical Sciences, 65(5), (2017), 709-714. DOI: 10.1515/bpasts-2017-0076.
Uwagi
Opracowanie rekordu ze 艣rodk贸w MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Spo艂eczna odpowiedzialno艣膰 nauki" - modu艂: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fd7bef8-68bc-4194-9d6a-aff0636b12eb
JavaScript jest wy艂膮czony w Twojej przegl膮darce internetowej. W艂膮cz go, a nast臋pnie od艣wie偶 stron臋, aby m贸c w pe艂ni z niej korzysta膰.