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APPROXIMATION OF THE OFFSET CURVES IN THE FORMATION 

OF TURBO ROUNDABOUTS 

Anna BOROWSKA 

Bialystok University of Technology, Faculty of Computer Science 

ul. Wiejska 45A, 15-351 Bialystok, POLAND 

e-mail: a.borowska@pb.edu.pl 

 

Abstract. This article describes the results of numerical analysis of the following problem: the 

approximation of the offset curve off(c(t); s) of the Archimedean spiral c(t) at distance s by the 

other Archimedean spiral c1(t). We focus on the spirals which can be used to shape the turbo 

roundabouts. The paper contains mathematical facts which are helpful in designing the turbo 

roundabouts formed by means of the Archimedean spiral. 

Keywords: Archimedean spiral, offset curve, turbo roundabout 

1 Introduction 

This article is a continuation of research from [1], [3] and [4]. In [4] it was suggested to 

analyze the properties of Archimedean spiral (see Figure 2) which can be used to shape the 

turbo roundabouts. A large safety coefficient is the advantage of such roundabouts, because 

the tracks of vehicles on the turbo roundabouts do not intersect. Statistics show a much higher 

capacity of such roundabouts in comparison to regular intersections (up to 20%) (cf. [3]). 

Additionally, if one traffic direction is dominant in terms of the intensity, specialists 

recommend the turbo roundabout with the elliptical central island (Figure 1). 

Section 2 contains mathematical facts necessary to describe research results. Section 3 

contains results of the numerical analysis of Archimedean spiral properties. We considered 

this curve as a tool that can be used to shape the turbo roundabouts. The starting point 

),(
sss ttt yxP  (the angle st ) of the spiral from which we can start delineating the central island 

was determined. It has been tested for which parameter values s (the width of the lane) and st  

 
Figure 1: The typical elliptical turbo roundabout (cf. [1])        Figure 2: Archimedean spiral with one shaded coil 
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(the angle corresponding to the starting point 
stP ) the approximation of the offset curve 

off(c(t); s) of the Archimedean spiral c(t) by the spiral c1(t)=c(t+2π) is satisfactory, i.e. for 

which parameter values s and st  the maximum deviation between the two curves off(c(t); s) 

and c1(t) does not exceed the accuracy of the delineating the curves in the terrain. Section 4 

includes the algorithm which assesses the possibility of approximating an ellipse offset curve 

by another ellipse. 

2 Mathematical formulas 

Let ))(),(()( tytxtc =  ( ],[ βα∈t ) be a parametric representation of a planar curve (functions 

)(tx , )(ty  will be described as tx , ty ). The curvature of the curve c(t) at the point ),( tt yxP  

is determined by the formula (cf. [8], p. 225) 
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The arc length of the smooth curve c(t) (where functions )(tx , )(ty  have continuous 

derivatives on ],[ βα ) is expressed by the formula (cf. [8], p. 317) 

 dtyxL tt∫ +=
β

α

2'2'  (2) 

Let us assume that the curve ))(),(()( tytxtc = , ],[ βα∈t  fulfills the conditions 1-2 (1. 

functions )(tx , )(ty  are continuous on ],[ βα ; 2. the function )(tx  is increasing and has a 

continuous derivative on ],[ βα ). The area bounded by the arc of the curve c(t), the x-axis, and 

two lines )(1 αxx = , )(2 βxx =  is given by the formula (3a) (cf. [2], p. 179). If above 

conditions are fulfilled and the function )(tx  is decreasing on ],[ βα  then the defined area is 

given by the formula (3b). 

 (a) ∫=
β

α
dtxyP tt

'||  (b) ∫−=
β

α
dtxyP tt

'||  (3) 

The normal vector to the curve c(t) at the point ),( tt yxP  is as follows ],[n ''
tt xy−=  (cf. [5]). 

The unit normal vector at the point ),( tt yxP  is defined as (cf. [9], p. 335, [7]) 
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Definition 1 (an offset curve dc  at distance d) (cf. [9], p. 335, [6]): 

For a smooth planar curve c, we define an offset curve dc  at distance d in the following way. 

On each curve normal, we mark the two points that are at distance d from the curve c. The set 

of all of these points forms the offset )( '''
ddd ccc ∪= . 

The offset )(tcd  at distance d to the curve c(t) is obtained as )(n)()( ver tdtctcd ±= . 

The curve c and its offset curves '
dc  and ''

dc  are seldom of the same type. The offset curves of 

the circle are circles and the ellipse offset curves are not ellipses. The interesting offset 

surfaces (offset curves) are described in [6], [7] and [3]. 

Lemma 1: 

 ∫ ++−= Ctttdttt )2sin()41()2cos()21()2sin( , (4) 

 ∫ +−+−= Ctttttdttt )2sin()8)21(()2cos()4()6()(sin 2322 . (5) 
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Justification. For checking, it is enough to determine the derivative of the result. 

3 Archimedean spiral 

Presented below facts can be helpful in designing the turbo roundabouts formed by using the 

Archimedean spiral. The Archimedean spiral is a curve outlined by point P moving with the 

constant speed v along the half-line, which has the origin in point O (the origin of the 

coordinate system), and turns around it at a constant angular velocity ω (cf. [4]). The 

parametric equations of the Archimedean spiral are of the form (cf. [8], p. 229) 

 )cos(tatx = , )sin(taty = , where a>0, 0≥t . (6) 

The distance || OPr =  is proportional to the angle of rotation t (r=at), a=const. 

The Archimedean spiral can be used to shape the turbo roundabout because the length of the 

segment lying on any radius between the two nearest branches of the spiral is fixed and equals 

2πa. The existence of a simple method for delineating the spiral in the terrain is also 

important (cf. [4]). 

The unit normal vector to the Archimedean spiral c(t) at the point ),( tt yxP  is of the form 
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The equation of the offset curves of the Archimedean spiral is as follows 

 
21

))]sin()(cos()),cos()(sin([
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Assumption 1. We assume in the whole section 3 that the distance between the branches of 

the spiral is s (the width of the lane), hence )2( πsa = . All calculations were made for the 

following widths of the lane s=3.5, 4, 4.5, 5, 5.5 (for roundabouts approved in [10]). 

3.1 Approximation of the Archimedean spiral offset curve 

Offset curves are used to shape the turbo roundabouts. We checked the possibility of 

approximating the Archimedean spiral offset curve off(c(t); s) by the other Archimedean 

spiral c1(t) defined as follows 

 )cos()2( ttax π+= , )sin()2( ttay π+= , π2sa =  (8) 

Let us assume that P is any point of the spiral c(t) (i.e. for any fixed angle t) and l is the 

normal line to c(t) at the point P. Point P1 lies on the normal line l at distance s from P. Q is 

the intersection point of the normal l with the curve c1(t). S is the point of the spiral c1(t) for 

the angle t (i.e. the point of the spiral c(t) for the angle t+2π). (see Figure 3) 

         
Figure 3: The arrangement of points P, P1, S, Q, R and lines l and k 

Figure 4: The Archimedean spiral c(t) for t∈[0, 5π/3], the offset off(c(t), s), the Archimedean spiral c1(t) for t∈[0, 

5π/3] 
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Fact 1 (cf. [3]). The approximation of the offset curve off(c(t); s) by the curve c1(t) is 

satisfactory if for any point P of the curve c(t) there is kd QP ≤
1

 for k=0.01, i.e. when the 

deviation QPd
1

 does not exceed the accuracy of the delineating the curves in the terrain. 

Let us draw a straight line k passing through the origin of the coordinate system O and the 

point P1. Let R be the intersection point of the line k and the spiral c1(t). Let the angle ϕ 

correspond to the point R of the curve c1(t). || 1OPr = . α is the angle between the x-axis and 

the line k. E(x) represents the floor function. 

 22
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Table 1 contains the following distances between the point P1 and the curve c1(t): || 11 SPd = , 

|| 12 RPd = , d3 – the smallest distance between the point P1 and the curve c1(t). λ denotes the 

angle corresponding to the point F (of the curve c1(t)) such that || 13 FPd = . Calculations were 

made for the following lane widths s=3.5, 4, 4.5, 5, 5.5. 

Table 1: Distances between the point P1 of the offset curve off(c(t); s) and the curve c1(t). || 11 SPd = , 

|| 12 RPd = , d3 – the smallest distance between the point P1 and the curve c1(t) 

 t=0° 

t1=360° 

ϕ=270° 

λ=273° 

t=90° 

t1=450° 

ϕ=423°50’42’’

λ=424°5’42’’ 

t=180° 

t1=540° 

ϕ=528°12’29’’

λ≈ϕ 

t=270° 

t1=630° 

ϕ=623°9’4’’ 

λ≈ϕ 

t=360° 

t1=720° 

ϕ=715°28’41’’

λ≈ϕ 

t=450° 

t1=810° 

ϕ=806°46’34’’

λ≈ϕ 

t=540° 

t1=900° 

ϕ=897°34’41’’

λ≈ϕ 

t=630° 

t1=990° 

ϕ=988°6’40’’ 

λ≈ϕ 

t=720° 

t1=1080° 

ϕ=1078°29’2’’

λ≈ϕ 

s=3.5 d1=4.949747 

d2=0.870 

d3=0.860753 

d1=1.957726 

d2=0.143371 

d3=0.142123 

d1=1.074329 

d2=0.059393 

d3≈d2 

d1=0.730534 

d2=0.033828 

d3≈d2 

d1=0.551836 

d2=0.022177 

d3≈d2 

d1=0.442953 

d2=0.015761 

d3≈d2 

d1=0.369805 

d2=0.011818 

d3≈d2 

d1=0.317328 

d2=0.009208 

d3≈d2 

d1=0.277862 

d2=0.007386 

d3≈d2 

s=4 d1=5.656854 

d2=1 

d3=0.983718 

d1=2.237401 

d2=0.163853 

d3=0.162427 

d1=1.227804 

d2=0.067878 

d3≈d2 

d1=0.834895 

d2=0.038661 

d3≈d2 

d1=0.630670 

d2=0.025341 

d3≈d2 

d1=0.506232 

d2=0.018012 

d3≈d2 

d1=0.422634 

d2=0.013507 

d3≈d2 

d1=0.362660 

d2=0.010524 

d3≈d2 

d1=0.317557 

d2=0.008441 

d3≈d2 

s=4.5 d1=6.363961 

d2=1.125 

d3=1.106683 

d1=2.517076 

d2=0.184335 

d3=0.182730 

d1=1.381280 

d2=0.076363 

d3≈d2 

d1=0.939257 

d2=0.043493 

d3≈d2 

d1=0.709503 

d2=0.028509 

d3≈d2 

d1=0.569511 

d2=0.020264 

d3≈d2 

d1=0.475464 

d2=0.015195 

d3≈d2 

d1=0.407993 

d2=0.011839 

d3≈d2 

d1=0.357252 

d2=0.009496 

d3≈d2 

s=5 d1=7.071068 

d2=1.25 

d3=1.229647 

d1=2.796752 

d2=0.204816 

d3=0.203034 

d1=1.534755 

d2=0.084847 

d3≈d2 

d1=1.043619 

d2=0.048326 

d3≈d2 

d1=0.788337 

d2=0.031677 

d3≈d2 

d1=0.632790 

d2=0.022515 

d3≈d2 

d1=0.528293 

d2=0.016883 

d3≈d2 

d1=0.453325 

d2=0.013155 

d3≈d2 

d1=0.396946 

d2=0.010551 

d3≈d2 

s=5.5 d1=7.778174 

d2=1.378976 

d3=1.352612 

d1=3.076427 

d2=0.225298 

d3=0.223337 

d1=1.688231 

d2=0.093332 

d3≈d2 

d1=1.147981 

d2=0.053158 

d3≈d2 

d1=0.867171 

d2=0.034844 

d3≈d2 

d1=0.696068 

d2=0.024767 

d3≈d2 

d1=0.581122 

d2=0.018572 

d3≈d2 

d1=0.498658 

d2=0.014470 

d3≈d2 

d1=0.436641 

d2=0.011606 

d3≈d2 

 

For the established angle t (for all analyzed values s) we have the same values t1 (=t+2π), ϕ 

and λ. 

Starting from t=134°30’ we can assume that the smallest distance between the point P1 and 

the curve c1(t) is 312 || dRPd ≈= . This property was checked for s=0.5, …, 6000. Therefore, 

the problem whether the approximation of the offset curve off(c(t); s) by the curve c1(t) is 

satisfactory can be reduced to checking the condition 01.0
12 ≤= RPdd . 

Table 2: Data for the Archimedean spiral c(t) (for a=s/2π, where s=3.5, 4, 4.5, 5, 5.5): the smallest angle ϕ such 

that for ϕϕ ≥1 01.0)( 12 ≤ϕd , the angle t (for the point P(xt, yt)) corresponding to ϕ and the distance d2 

 s=3.5 s=4 s=4.5 s=5 s=5.5 

t 599° 650° 698° 744° 787° 

t1=t+2π 959° 1010° 1058° 1104° 1147° 

ϕ 956° 1008°12’18’’ 1056°24’13’’ 1102°33’52’’ 1145°41’36’’ 

d2 0.009998306 0.009998113 0.009999058 0.009988815 0.009979469 
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3.2 The size of the central island 

The diameter of the smallest central island of the circular roundabout in the build-up area 

(approved in [10]) equals 17m. 

Let us assume that tP  is any point of the spiral c(t) (for the established angle t), || tt OPr =  is 

the radius, || π+= ttt PPp  is the segment passing through the origin of the coordinate system O 

( π++= ttt rrp ), γ is the smallest angle such that the length of the segment 

|| πγγγ += PPp ≥17, 1γ  - the angle γ which is rounded to full π. 

Example 1. We need to determine the segment ||
111 πγγγ += PPp  for the Archimedean spiral 

c(t) (for a=s/2π, where s=3.5). We have 744 == ππ ar , 75.855 == ππ ar , 5.1066 == ππ ar . 

75.1575.87544 =+=+= πππ rrp , 25.195.1075.8655 =+=+= πππ rrp , πγ 51 = . 

Table 3: Data for the Archimedean spiral c(t) (for a=s/2π, where s=3.5, 4, 4.5, 5, 5.5): the angle γ, the length of 

the segment γp , the angle 1γ  (the angle γ which is rounded to full π) 

 s=3.5 s=4 s=4.5 s=5 s=5.5 

γ 785°=4π+65° 675°=3π+135° 590°=3π+50° 522°=2π+162°467°=2π+107°
pγ 17.01388888 17.0 17.0 17.0 17.01944444 

γ1 5π 4π 4π 3π 3π 

 

For the Archimedean spiral c(t) for γ>t  each segment 17|| ≥= +πttt PPp . 

3.3 Curvature of the curve c(t) 

The curvature of the Archimedean spiral c(t) at the point P(xt, yt) is defined as (cf. (1), [8]) 

 
32
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The curvature of the Archimedean spiral c(t) (for ]2,[ 11 πγγ +∈t  (cf. Table 3)) for the width 

of the lane s=3.5, 4, 4.5, 5, 5.5 (a=s/2π) was determined. The points of the spiral were taken 

(every π/4). 

Table 4: The curvature of the edge of the smallest central island of the turbo roundabout 

 The angle t (point Pt) of the spiral and the curvature of the spiral at the point Pt 

s=3.5 t=5π 

κ=0.114515 

t=5π+π/4 

κ=0.109042 

t=5π+π/2 

κ=0.104069 

t=5π+3π/4 

κ=0.099530 

t=6π 

κ=0.095371 

t=6π+π/4 

κ=0.091546 

t=6π+π/2 

κ=0.088017 

t=6π+3π/4 

κ=0.084750 

t=7π 

κ=0.081717 

s=4 t=4π 

κ=0.125390 

t=4π+π/4 

κ=0.117973 

t=4π+π/2 

κ=0.111386 

t=4π+3π/4 

κ=0.105497 

t=5π 

κ=0.100201 

t=5π+π/4 

κ=0.095412 

t=5π+π/2 

κ=0.091060 

t=5π+3π/4 

κ=0.087089 

t=6π 

κ=0.083450 

s=4.5 t=4π 

κ=0.111458 

t=4π+π/4 

κ=0.104865 

t=4π+π/2 

κ=0.099010 

t=4π+3π/4 

κ=0.093775 

t=5π 

κ=0.089067 

t=5π+π/4 

κ=0.084810 

t=5π+π/2 

κ=0.080942 

t=5π+3π/4 

κ=0.077412 

t=6π 

κ=0.074178 

s=5 t=3π 

κ=0.134065 

t=3π+π/4 

κ=0.123655 

t=3π+π/2 

κ=0.114750 

t=3π+3π/4 

κ=0.107045 

t=4π 

κ=0.100312 

t=4π+π/4 

κ=0.094378 

t=4π+π/2 

κ=0.089109 

t=4π+3π/4 

κ=0.084398 

t=5π 

κ=0.080161 

s=5.5 t=3π 

κ=0.121877 

t=3π+π/4 

κ=0.112413 

t=3π+π/2 

κ=0.104318 

t=3π+3π/4 

κ=0.097313 

t=4π 

κ=0.091193 

t=4π+π/4 

κ=0.085798 

t=4π+π/2 

κ=0.081008 

t=4π+3π/4 

κ=0.076725 

t=5π 

κ=0.072873 

 

The curvature of the edge of the smallest central island (with diameter d=17m) of the circular 

roundabout in the build-up area (approved in [10]) at any point is equal κc=0.117647058. 

In [4] it was assumed that the ellipse forming the interior traffic lane of a turbo 

roundabout cannot, at any point, be shaped by a radius smaller than the minimal admissible 

radius destined for a circular roundabout. Therefore, it should be assumed that the curvature 

of a fragment of a spiral that shapes the central island of the roundabout, at no point, can be 

greater than κc. 
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Based on Tables 2, 3 and 4, we can determine (suggest) the starting point 
st

P  (the 

angle ts) such that the fragment of the spiral forming the central island (which has the smallest 

size approved in [10]) can be plotted starting from this point. 

Table 5: The suggested angle ts (for the starting point 
st

P ) for the smallest central island (approved in [10]) 

 s=3.5 s=4 s=4.5 s=5 s=5.5 

ts 5π 5π 4π 4π 4π 

 

Example 2. The starting point 
st

P  (the angle ts) for the smallest central island (approved in 

[10]) shaped by the Archimedean spiral (for a=s/2π, where s=3.5) will be determined. 

(a) The smallest angle γ1 such that the segment ||
111 πγγγ += PPp ≥17 equals γ1=5π (Table 3). 

Therefore, we can assume that ts=5π. (b) The curvature of the spiral c(t) at the point P(xt, yt) 

for t=5π equals κ=0.114515<κc (Table 4). (c) The approximation of the curve off(c(t); s) by 

the spiral c1(t) is satisfactory starting from the angle t=599°=3*180°+59° (Table 2). (d) 

Therefore, for s=3.5 we can establish ts=5π. 

3.4 The arc length of the Archimedean spiral 

The arc length of the Archimedean spiral c(t) is expressed by the formula (cf. (2)) 
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In order to determine the length of the fragment of the spiral c(t) shaping the roundabout (the 

edge of the central island, the axis of the road and the outer edge of the roundabout) we must 

sum up the lengths of 3 coils of the spiral c(t) starting from the starting point 
st

P  (the angle ts) 

(cf. Table 5). The knowledge of the length of the edge of the roundabout is necessary, among 

other things, to order a suitable amount of building materials (e.g. curb). 

3.5 Area of two-lane road of the roundabout 

Let the Archimedean spiral c(t) be defined by the parametric equations (6). By virtue of 

formula (3), we obtain the following formula for the area of the fragment of the spiral coil (a) 

for 0≥ty , (b) for 0<ty . 
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Example 3. 6|| 32
),0( ππ aP = , 346)01(6)12(|| 3232333233

)2,0( ππππ aaaP =−+−= . 

In order to determine the area of two-lane road of the turbo roundabout shaped by the spiral 

c(t) we must sum up the areas of 2 coils of the spiral. The knowledge of the area of two-lane 

road of the roundabout is necessary, among other things, to order a suitable amount of 

building materials (e.g. asphalt). 



The Journal of Polish Society for Geometry and Engineering Graphics 

Volume 31 (2018), 53 - 60 59 

ISSN  1644-9363 / PLN 15.00    2018  PTGiGI 

4 Algorithm 

The algorithm presented below checks the possibility of the approximation of the ellipse 

offset curve off(el(t); s) by the ellipse el1(t), when the acceptable deviation k between these 

two curves is given. The ellipses el(t) and el1(t) are defined as follows 

 el(t) )cos(tax = , )sin(tby = , ]2,0[ π∈t , 

 el1(t) )cos()( tsax += , )sin()( tsby += , ]2,0[ π∈t . 

Let us assume that P is any point of the ellipse el(t), l is the normal line to el(t) at the point P. 

Point P1 lies on the normal line l at distance s from P. Q1 is the intersection point of the 

normal l with the ellipse el1(t). Point D1 lies on the line l at distance k from P1. Point B1 

belongs to the ellipse el1(t) and has the same coordinate x as point D1 (see Figures 5 and 6). 

We shall focus on the ellipse fragment for ]2/,0[ π∈t . The following equations are true (see 

Figures 5 and 6) 
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We shall determine such angle ϕ that )cos()(
11

ϕsaxx BD +==  (see point B1 Figure 5). From 

the above calculations and the assumption ]2/,0[ π∈t  we have ))(arccos(
1

saxD +=ϕ . 

If 
11

)sin()( DB ysby ≥+= ϕ  then kQPd QP ≤= || 1111
, otherwise kd QP >

11
 (Figures 5 and 6). 

The following algorithm checks the condition kd QP ≤
11

 for consecutive points P(xt, yt) (the 

angle t is taken (every dt)) using the method described above. 
 
void ellipse::Algorithm(double dt, double s, double k){ 

//definitions of variables 

t=dt; 

while(t<π/2){ 
  v=((a/b)*tan(t))

2
; 

  xP=a*cos(t);      yP=b*sin(t); 

  xP1=xP+s/√(1+v);     yP1=yP+s*√(v/(1+v)); 
  xD1=(s-k)*(xP1-xP)/s+xP;  yD1=yP1-k*(yP1-yP)/s; 

  fi=arccos(xD1/(a+s));   yB1=(b+s)*sin(fi); 

  if(yB1>=yD1)cout<< t*180/π<< "+"; else cout<< t*180/π << "-"); 

 
Figure 5: The arrangement of points and curves Figure 6: The arrangement of points and curves 
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  t+=dt;} 

Results of the algorithm: 
Data:   a=60, b=20, s=40, k=10, dt=p/36 (see Figure 6) 

Result: 5+ 10+ 15+ 20+ 25+ 30+ 35+ 40+ 45+ 50+ 55+ 60+ 65+ 70+ 75+ 80+ 85+ 90+ 

Data:  a=20.5, b=17, s=3.5, k=0.01, dt=p/36 (see Figure 5) 

Result: 5+ 10+ 15+ 20+ 25+ 30- 35- 40- 45- 50- 55- 60+ 65+ 70+ 75+ 80+ 85+ 90+ 

The method presented above (after a proper modification) can be used to analyze the 

approximation problem for other parametric curves. 

5 Conclusions 

The possibility of approximating the offset curve off(c(t); s) of the Archimedean spiral c(t) at 

distance s by the other Archimedean spiral c1(t) was numerically analyzed. The spirals that 

can be used to shape the turbo roundabouts were considered. This article focuses on 

presenting mathematical facts which are helpful in designing the turbo roundabouts formed by 

means of the Archimedean spirals. 
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APROKSYMACJA KRZYWYCH OFFSETOWYCH W 

KSZTAŁTOWANIU ROND TURBINOWYCH 

W pracy przedstawione są rezultaty analizy numerycznej dla problemu aproksymacji krzywej 

offsetowej off(c(t); s) spirali Archimedesa c(t) (o odległości s) przez inną spiralę Archimedesa 

c1(t). Szczególnie rozważane były te spirale, które mogą posłużyć do kształtowania rond 

turbinowych. Artykuł zawiera matematyczne fakty i wyniki obliczeń pomocne w 

projektowaniu rond turbinowych kształtowanych za pomocą spirali Archimedesa. 

 

 

 


