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APPROXIMATION OF THE OFFSET CURVES IN THE FORMATION
OF TURBO ROUNDABOUTS

Anna BOROWSKA

Bialystok University of Technology, Faculty of Computer Science
ul. Wiejska 45A, 15-351 Bialystok, POLAND
e-mail: a.borowska@pb.edu.pl

Abstract. This article describes the results of numerical analysis of the following problem: the
approximation of the offset curve off(c(); s) of the Archimedean spiral c(#) at distance s by the
other Archimedean spiral c¢,(f). We focus on the spirals which can be used to shape the turbo
roundabouts. The paper contains mathematical facts which are helpful in designing the turbo
roundabouts formed by means of the Archimedean spiral.

Keywords: Archimedean spiral, offset curve, turbo roundabout

1 Introduction

This article is a continuation of research from [1], [3] and [4]. In [4] it was suggested to
analyze the properties of Archimedean spiral (see Figure 2) which can be used to shape the
turbo roundabouts. A large safety coefficient is the advantage of such roundabouts, because
the tracks of vehicles on the turbo roundabouts do not intersect. Statistics show a much higher
capacity of such roundabouts in comparison to regular intersections (up to 20%) (cf. [3]).
Additionally, if one traffic direction is dominant in terms of the intensity, specialists
recommend the turbo roundabout with the elliptical central island (Figure 1).

Figure 1: The typical elliptical turbo roundabout (cf. [1]) Figure 2: Archimedean spiral with one shaded coil

Section 2 contains mathematical facts necessary to describe research results. Section 3
contains results of the numerical analysis of Archimedean spiral properties. We considered
this curve as a tool that can be used to shape the turbo roundabouts. The starting point
P (xts s Vi, ) (the angle ¢, ) of the spiral from which we can start delineating the central island

was determined. It has been tested for which parameter values s (the width of the lane) and ¢,
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54 A.Borowska: Approximation of the Offset Curves in the Formation of Turbo Roundabouts

(the angle corresponding to the starting point P,S) the approximation of the offset curve
off(c(t); s) of the Archimedean spiral c(¢) by the spiral c¢;(f)=c(t+27) is satisfactory, i.e. for
which parameter values s and ¢, the maximum deviation between the two curves off(c(t); s)

and ¢(#) does not exceed the accuracy of the delineating the curves in the terrain. Section 4
includes the algorithm which assesses the possibility of approximating an ellipse offset curve
by another ellipse.

2 Mathematical formulas
Let c(t) = (x(1), y(t)) (te€[a,f]) be a parametric representation of a planar curve (functions

x(t), y(t) will be described as x;,, y,). The curvature of the curve c(t) at the point P(x;, y,)
is determined by the formula (cf. [8], p. 225)

oo XY =% | )

l(x;Z + y;2)3

The arc length of the smooth curve c(t) (where functions x(t), y(f) have continuous
derivatives on [a, f]) is expressed by the formula (cf. [8], p. 317)

B ,
L=[x+y>dt (2)
[24

Let us assume that the curve c(¢) = (x(¢), y(t)), te[a, ] fulfills the conditions 1-2 (1.
functions x(t), y(¢) are continuous on [a, S]; 2. the function x() is increasing and has a
continuous derivative on [, f]). The area bounded by the arc of the curve c(), the x-axis, and
two lines x, =x(&), x, =x(f) is given by the formula (3a) (cf. [2], p. 179). If above
conditions are fulfilled and the function x(¢) is decreasing on [, #] then the defined area is
given by the formula (3b).

B . B .
(@ P=[ly,Ixdt (b) P=—[ly, | x.dt 3)
a a
The normal vector to the curve c() at the point P(x,,y,) is as follows n = [—y;,x;] (ctf. [5]).

The unit normal vector at the point P(x;,y,) is defined as (cf. [9], p. 335, [7])
[~ Y, %]

Va2 + o)’

Definition 1 (an offset curve c; at distance d) (cf. [9], p. 335, [6]):

For a smooth planar curve ¢, we define an offset curve c,; at distance d in the following way.

1’lVeI' -

On each curve normal, we mark the two points that are at distance d from the curve c. The set
of all of these points forms the offset c¢; = (c'd ) c:i) .
The offset ¢, (t) at distance d to the curve c(f) is obtained as ¢ (¢) = c(t) T dn e, (2) .

The curve c and its offset curves c'd and c:l are seldom of the same type. The offset curves of

the circle are circles and the ellipse offset curves are not ellipses. The interesting offset
surfaces (offset curves) are described in [6], [7] and [3].
Lemma 1:

[£sin(2t)dt = —(1/2)t cos(2t) + (1/4)sin(2t) + C, 4)

[£2sin2(r)dr = (12 /6) - (t/4) cos(2t) + ((1- 262)/8) sin(21) + C . 5)
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Justification. For checking, it is enough to determine the derivative of the result.

3 Archimedean spiral
Presented below facts can be helpful in designing the turbo roundabouts formed by using the
Archimedean spiral. The Archimedean spiral is a curve outlined by point P moving with the
constant speed v along the half-line, which has the origin in point O (the origin of the
coordinate system), and turns around it at a constant angular velocity @ (cf. [4]). The
parametric equations of the Archimedean spiral are of the form (cf. [8], p. 229)

x=atcos(t), y=atsin(t), where a>0, t > 0. 6)
The distance r=OP| is proportional to the angle of rotation ¢ (r=at), a=const.
The Archimedean spiral can be used to shape the turbo roundabout because the length of the
segment lying on any radius between the two nearest branches of the spiral is fixed and equals
2m. The existence of a simple method for delineating the spiral in the terrain is also
important (cf. [4]).
The unit normal vector to the Archimedean spiral ¢(¢) at the point P(x,,y,) is of the form
_ [=(sin(?) +t cos(?)), (cos(t) —tsin(?))]

ver — \/1+t2

The equation of the offset curves of the Archimedean spiral is as follows
s[—(sin(z) + £ cos(t)), (cos(¢) —t sin(t
o ({028 XY ] = Ly, 4 SO+ 108(0), Cos(0) = 5in(®)]

\/1+t2

Assumption 1. We assume in the whole section 3 that the distance between the branches of
the spiral is s (the width of the lane), hence a =s/(27). All calculations were made for the
following widths of the lane s=3.5, 4, 4.5, 5, 5.5 (for roundabouts approved in [10]).

(7

3.1 Approximation of the Archimedean spiral offset curve

Offset curves are used to shape the turbo roundabouts. We checked the possibility of
approximating the Archimedean spiral offset curve offic(?); s) by the other Archimedean
spiral c;(¢) defined as follows
x=a(t+2x)cos(t), y=a(t+2x)sin(t), a=s/2x (8)

Let us assume that P is any point of the spiral c(¢) (i.e. for any fixed angle 7) and [ is the
normal line to ¢(¢) at the point P. Point P; lies on the normal line / at distance s from P. Q is
the intersection point of the normal / with the curve c;(¢). S is the point of the spiral c;(¢) for
the angle ¢ (i.e. the point of the spiral c(¢) for the angle t+27). (see Figure 3)

o x
c(t

afie): )

.__/

Figure 3: The arrangement of points P, Py, S, Q, R and lines / and k
Figure 4: The Archimedean spiral c(¢) for r€ [0, 5273], the offset off(c(¢), s), the Archimedean spiral c,(¢) for € [0,
53]
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Fact 1 (cf. [3]). The approximation of the offset curve offic(t); s) by the curve c(?) is
satisfactory if for any point P of the curve c(¢) there is d PO < k for k=0.01, i.e. when the

deviation d PO does not exceed the accuracy of the delineating the curves in the terrain.

Let us draw a straight line k passing through the origin of the coordinate system O and the
point P;. Let R be the intersection point of the line k£ and the spiral c;(¢). Let the angle ¢
correspond to the point R of the curve ¢ (7). r =l O_Pl |. aris the angle between the x-axis and
the line k. E(x) represents the floor function.

>
o, arccos(xpl/r) foryp 20
V'R TR

Table 1 contains the following distances between the point P, and the curve c¢;(¢): d; = ﬁ [,

w=E(t-a)/180°), p=(w+2)m+

—arccos(xp /r) foryp <0’

d, =l ﬁ |, d; — the smallest distance between the point P, and the curve c¢(¢). A denotes the

angle corresponding to the point F (of the curve ci(¢)) such that d5 =| ﬁ |. Calculations were
made for the following lane widths s=3.5, 4, 4.5, 5, 5.5.

Table 1: Distances between the point P; of the offset curve off(c(¢); s) and the curve c(¢). d; =Iml,

d, =l ﬁ |, d5 — the smallest distance between the point P; and the curve c(f)

t=0°

t=360°
0=270°
1=273°

t=90°

i1, =450°
@=423°5042"
A=424°5°42""

t=180°
1=540°
0=528°1229"
A=¢

1=270°
=630°
¢=623°0°4"
A=0

t=360°
1=720°
p=715°28’41""
A=¢

t=450°
1=810°
p=806°46"34"’
=9

t=540°
=900°
@=897°3441"
A=0

t=630°
11=990°
=088°6°40""
A=¢

1=720°
=1080°
¢=1078°29°2"’
A=0

s=3.5

1=4.949747
d>=0.870
3=0.860753

1=1.957726
d,=0.143371
1=0.142123

1=1.074329
d,=0.059393
d3zd2

1=0.730534
,=0.033828
d}zdz

1=0.551836
d>=0.022177
d3zd2

1=0.442953
d>=0.015761
d3zd2

1=0.369805
d,=0.011818
d}zdz

1=0.317328
d>=0.009208
d3zd2

1=0.277862
d,=0.007386
d}zdz

s=4

1=5.656854
=1
d=0.983718

1=2.237401
»=0.163853
d:=0.162427

1=1.227804
H=0.067878
y=ds

1=0.834895
»,=0.038661
3:d2

1=0.630670
Hh=0.025341
y=ds

1=0.506232
»,=0.018012
y=d,

1=0.422634
»,=0.013507
=d,

1=0.362660
1»=0.010524
y=ds

1=0.317557
1,=0.008441
y=d,

s=4.5

d,=6.363961
d>=1.125
3=1.106683

d,=2.517076
d,=0.184335
1=0.182730

d,=1.381280
d>=0.076363
d3zd2

d,=0.939257
d,=0.043493
d}zdz

d,=0.709503
d>=0.028509
d3zd2

d,=0.569511
d,=0.020264
d3zd2

d,=0.475464
d,=0.015195
d}zdz

d,=0.407993
d>=0.011839
d3zd2

d,=0.357252
d,=0.009496
d}zdz

s=5

1=7.071068
d=1.25
d=1.229647

1=2.796752
d,=0.204816
d=0.203034

1=1.534755
d>=0.084847
3:d2

1=1.043619
d,=0.048326
3:d2

1=0.788337
d>=0.031677
3:d2

1=0.632790
d>=0.022515
3:d2

1=0.528293
d,=0.016883
3:d2

1=0.453325
d>=0.013155
3:d2

1=0.396946
d,=0.010551
3:d2

s=5.5

d\=7.778174
H=1.378976
3=1.352612

d,=3.076427
1,=0.225298
1=0.223337

d,=1.688231
»=0.093332
d3zd2

d,=1.147981
,=0.053158
d}zdz

d,=0.867171
»,=0.034844
d3zd2

d,=0.696068
»,=0.024767
d3zd2

d,=0.581122
,=0.018572
d}zdz

d,=0.498658
»,=0.014470
d3zd2

d,=0.436641
»,=0.011606
d}zdz

For the established angle ¢ (for all analyzed values s) we have the same values #, (=+27), ¢
and A.
Starting from 7=134°30" we can assume that the smallest distance between the point P; and

the curve c(?) is dp :Iﬁ l= d3. This property was checked for s=0.5, ..., 6000. Therefore,

the problem whether the approximation of the offset curve off(c(t); s) by the curve c(?) is
satisfactory can be reduced to checking the condition dy =dpg <0.01.

Table 2: Data for the Archimedean spiral c(7) (for a=s/2x, where s=3.5, 4, 4.5, 5, 5.5): the smallest angle ¢ such
that for ¢; =2 ¢ d, (¢;) <0.01, the angle ¢ (for the point P(x,, y;)) corresponding to ¢ and the distance d,

s=3.5 s=4 s=4.5 s=5 s=5.5

t 599° 650° 698° 744° 787°

H=t+27] 959° 1010° 1058° 1104° 1147°
[ 956° 1008°12°18"|1056°24° 13”7 [1102°33°52"" | 1145°41°36”
d, 10.009998306|0.009998113 [0.009999058 | 0.009988815 | 0.009979469
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3.2 The size of the central island

The diameter of the smallest central island of the circular roundabout in the build-up area
(approved in [10]) equals 17m.

Let us assume that P, is any point of the spiral c(¢) (for the established angle #), r, = O_Ptl is

the radius, p, =| F,F, ;| is the segment passing through the origin of the coordinate system O

(p;=r+r,,), ¥y is the smallest angle such that the length of the segment
py =l PyPy, 7 1217, 1 - the angle ywhich is rounded to full 7.
Example 1. We need to determine the segment Py, = Py Py in | for the Archimedean spiral

c(t) (for a=s/27x, where s=3.5). We have 1y, =adn =77, r5, =a57x =8.75, rg; =abxr =10.5.
Pag =Tag + V57 = 7+8.75=15.75, Psg =5z Trer = 8.75+10.5=19.25, Nn= S57.

Table 3: Data for the Archimedean spiral c(f) (for a=s/2x, where s=3.5, 4, 4.5, 5, 5.5): the angle ¥ the length of
the segment p,, the angle 7; (the angle ywhich is rounded to full 7)

s=3.5 s=4 s=4.5 s=5 s=5.5
Y |785°=4m+65°1675°=3 7£+1359590°=3 7+50°|522°=2 75+162°U67°=2 7+107°
py |17.01388888 17.0 17.0 17.0 17.01944444
% S5m 4 4 3z 3

For the Archimedean spiral c(#) for ¢t >y each segment p, =| BF,, ; 1217.

3.3 Curvature of the curve c(¢)

The curvature of the Archimedean spiral ¢(¢) at the point P(x;, y;) is defined as (cf. (1), [8])
2
2+t

lal(1+£%)3 '

The curvature of the Archimedean spiral c(¢) (for t€ [y}, +27x] (cf. Table 3)) for the width

of the lane s=3.5, 4, 4.5, 5, 5.5 (a=s/27) was determined. The points of the spiral were taken
(every 74).

Table 4: The curvature of the edge of the smallest central island of the turbo roundabout

The angle ¢ (point P,) of the spiral and the curvature of the spiral at the point P,

s=3.5 =57 t=5m+74 t=Smm2 | =534 =67 1=67+74 t=6m+m2 | t=67+374 =17
x=0.114515 | xk=0.109042 | x=0.104069 | x=0.099530 | x=0.095371 | k=0.091546 | x¥=0.088017 | x¥=0.084750 | x=0.081717
s=4 t=4r =475+ 4 =4+ 72 =434 =57 =S4 t=5m+72 =534 =67
k=0.125390 | x#=0.117973 | x=0.111386 | x=0.105497 | x=0.100201 | k=0.095412 | ¥=0.091060 | x=0.087089 | x=0.083450
s=4.5 t=4rx t=4 7w+ 4 t=4 7+ 2 t=47c+3 4 =517 =5+ 4 t=57w+m2 t=5+3 14 =61
x=0.111458 | x=0.104865 | k=0.099010 | x=0.093775 | k=0.089067 | k=0.084810 | x=0.080942 | x=0.077412 | x=0.074178
s=5 =37 =37+ 4 t=37+m2 t=37+3 74 t=4rx t=4 e+ 4 t=4 7+ 2 t=4c+3 4 =57
x=0.134065 | xk=0.123655 | x=0.114750 | x=0.107045 | k=0.100312 | k=0.094378 | x=0.089109 | x=0.084398 | x¥=0.080161
s=5.5 =37 =34 t=3mm2 | =334 =47 =4+ 74 t=4mm2 | t=4m+374 =57
x=0.121877 | xk=0.112413 | x=0.104318 | x=0.097313 | x=0.091193 | k=0.085798 | x=0.081008 | x=0.076725 | x¥=0.072873

The curvature of the edge of the smallest central island (with diameter d=17m) of the circular
roundabout in the build-up area (approved in [10]) at any point is equal x=0.117647058.

In [4] it was assumed that the ellipse forming the interior traffic lane of a turbo
roundabout cannot, at any point, be shaped by a radius smaller than the minimal admissible
radius destined for a circular roundabout. Therefore, it should be assumed that the curvature
of a fragment of a spiral that shapes the central island of the roundabout, at no point, can be
greater than K.

ISSN 1644-9363 / PLN 15.00 © 2018 PTGiGI
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Based on Tables 2, 3 and 4, we can determine (suggest) the starting point 17 (the

angle t,) such that the fragment of the spiral forming the central island (which has the smallest
size approved in [10]) can be plotted starting from this point.

Table 5: The suggested angle ¢, (for the starting point P,S ) for the smallest central island (approved in [10])

5s=3.5 s=4 s=4.5 s=5 5s=5.5
1 Sz 5w 4r 4 4r

Example 2. The starting point 7, (the angle 7,) for the smallest central island (approved in
[10]) shaped by the Archimedean spiral (for a=s/27x, where s=3.5) will be determined.
(a) The smallest angle 7 such that the segment Py, = Py Py ix =17 equals =57 (Table 3).

Therefore, we can assume that #,=57. (b) The curvature of the spiral c(¢) at the point P(x;, y;)
for =57 equals x=0.114515<x; (Table 4). (c) The approximation of the curve off(c(?); s) by
the spiral c(¢) is satisfactory starting from the angle r=599°=3*180°+59° (Table 2). (d)
Therefore, for s=3.5 we can establish ¢,=57.

3.4  The arc length of the Archimedean spiral
The arc length of the Archimedean spiral c(¥) is expressed by the formula (cf. (2))

B . 2 . 2 B 2
L=a j\/(cos(t)—tsm(t)) +(sin(t) +tcos(t))“dt =a [Vt +1dt =
(04 o

B
=%a[t\/t2 +1+1In(t+Vt2 +1)}
o

In order to determine the length of the fragment of the spiral ¢(¢) shaping the roundabout (the
edge of the central island, the axis of the road and the outer edge of the roundabout) we must
sum up the lengths of 3 coils of the spiral ¢(7) starting from the starting point P, (the angle 7)

(cf. Table 5). The knowledge of the length of the edge of the roundabout is necessary, among
other things, to order a suitable amount of building materials (e.g. curb).
3.5  Area of two-lane road of the roundabout

Let the Archimedean spiral c(f) be defined by the parametric equations (6). By virtue of
formula (3), we obtain the following formula for the area of the fragment of the spiral coil (a)
for y, 20, (b) for y, <0.

B , NI B
~ Ny, | x,dt = a?| [£%sin(t)dt — (1/2) [tsin(20)dt | for & = kx, = (k + )75,k mod 2 =0

o o o
| Pl=

B , oB5 . 5 B
[y, I x,dt =a”| [t°sin“(¢)dt — (1/2) [tsin(2t)dt | fora=kx, f=(k+1)7, kmod2 =1

o o o
|Pl= az[(t3 J6)—(t2/4) sin(2t)]§ (cf. Lemma 1).
Example 3. | P 7 l=a*23/6, | P oy = (22 = 1%) a223 [6+ (12 = 0%) a%73 f6 = 40273 3.

In order to determine the area of two-lane road of the turbo roundabout shaped by the spiral
c(t) we must sum up the areas of 2 coils of the spiral. The knowledge of the area of two-lane
road of the roundabout is necessary, among other things, to order a suitable amount of
building materials (e.g. asphalt).
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4 Algorithm
The algorithm presented below checks the possibility of the approximation of the ellipse
offset curve off(el(t); s) by the ellipse el,(¢), when the acceptable deviation k between these
two curves is given. The ellipses el() and el (¢) are defined as follows

el(t) x=acos(t), y=>bsin(t),t€[0,27],

eli(t) x=(a+s)cos(t), y=(b+s)sin(t), te[0,27].
Let us assume that P is any point of the ellipse el(?), [ is the normal line to el(¢) at the point P.
Point P; lies on the normal line / at distance s from P. Q; is the intersection point of the
normal [ with the ellipse el;(f). Point D; lies on the line [ at distance k from P;. Point B;
belongs to the ellipse el;(#) and has the same coordinate x as point D; (see Figures 5 and 6).
We shall focus on the ellipse fragment for ¢ [0, 7 /2]. The following equations are true (see

Figures 5 and 6)

s Xp —Xp k Yp — YD, Xp =acos(t)
= and —=————, where ) )
s—k Xp, —Xp S Yp ~Vp yp =bsin(t)
xp XP"‘L X =ﬂ(x —Xp)+x
! V1+v a 2 by s h—7F P
, V= ;tan(t) . Hence r
v — _r -
R T . Yo, =¥R = (YR =¥P)

We shall determine such angle ¢ that x D, =XB, = (a+s)cos(¢) (see point B; Figure 5). From

the above calculations and the assumption ¢ € [0,7 /2] we have ¢ =arccos(x D, / (a+5)).

If VB, = (b+s)sin(@) = YD, then dP1Q1 =| A O, Ik, otherwise dP1Q1 >k (Figures 5 and 6).

i,

‘fqﬁ‘:S

P

] X

Figure 5: The arrangement of points and curves Figure 6: The arrangement of points and curves

The following algorithm checks the condition d PO < k for consecutive points P(x;, y;) (the

angle ¢ is taken (every dr)) using the method described above.

void ellipse::Algorithm(double dt, double s, double k) {
//definitions of variables
t=dt;
while (t<m/2) {
v=((a/b)*tan(t))?;

xP=a*cos (t); yP=b*sin(t);
XP1=XP+S/V(1+V); yPl=yP+s*V(v/(l+v));
xD1l=(s-k)* (xP1-xP) /s+xP; yD1l=yP1l-k* (yP1-yP)/s;

fi=arccos (xD1/ (a+s)); yBl=(b+s)*sin(fi);

if (yBl>=yD1l)cout<< t*180/m<< "+"; else cout<< t*180/m << "-");
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t+=dt;}

Results of the algorithm:

Data: a=60, b=20, s=40, k=10, dt=p/36 (see Figure 6)

Result: 5+ 10+ 15+ 20+ 25+ 30+ 35+ 40+ 45+ 50+ 55+ 60+ 65+ 70+ 75+ 80+ 85+ 90+
Data: a=20.5, b=17, s=3.5, k=0.01, dt=p/36 (see Figure 5)

Result: 5+ 10+ 15+ 20+ 25+ 30- 35- 40- 45- 50- 55- 60+ 65+ 70+ 75+ 80+ 85+ 90+

The method presented above (after a proper modification) can be used to analyze the
approximation problem for other parametric curves.

5 Conclusions

The possibility of approximating the offset curve off(c(t); s) of the Archimedean spiral c(¢) at
distance s by the other Archimedean spiral ¢(#) was numerically analyzed. The spirals that
can be used to shape the turbo roundabouts were considered. This article focuses on
presenting mathematical facts which are helpful in designing the turbo roundabouts formed by
means of the Archimedean spirals.
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APROKSYMACJA KRZYWYCH OFFSETOWYCH W
KSZTALTOWANIU ROND TURBINOWYCH

W pracy przedstawione sa rezultaty analizy numerycznej dla problemu aproksymacji krzywej
offsetowej off(c(); s) spirali Archimedesa c(f) (o odlegtosci s) przez inng spiral¢g Archimedesa
ci(#). Szczegblnie rozwazane byly te spirale, ktére moga postuzy¢ do ksztaltowania rond
turbinowych. Artykut zawiera matematyczne fakty i wyniki obliczen pomocne w
projektowaniu rond turbinowych ksztalttowanych za pomoca spirali Archimedesa.



