PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement systems of electromagnetic field for aircraft with the use of a machine learning model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, a new low-cost measurement system for measuring the electric component of electromagnetic field is presented. For the initial calibration of the new measurement system, a reference meter was used, and based on its readings, calibration was carried out using a machine learning model. Initial calibration was carried out in a GTEM 1000 with a Teseq ITS 6006 generator connected. Five models were compared, among which the K-Nearest Neighbors (KNN) model had the highest accuracy. The model was tested on 5 types of aircraft, and its readings were compared with a reference sensor. Test measurements were carried out in five types of aircraft: Cessna C172, Aero AT-3 R100, Tecnam P2006T, PZL M28 Bryza and the Mi-8 helicopter with the developed new measurement system and a reference meter (NHT3DL) with an 01E probe. The new measurement system is small in size and fits anywhere in the aircraft cockpit. To compare the models, the following metrics were used: the coefficient of determination, mean absolute error, mean square error and root mean square error. The Two-sample Kolmogorov-Smirnov tests were used for analysis, and the Bag of Words and Bag of Patterns methods were applied.
Rocznik
Strony
577--594
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
  • Department of Electrical Engineering and Superconductivity Technologies, Lublin University of Technology, 38A Nadbystrzycka Street, 20-618 Lublin, Poland
  • Faculty of Management, Lublin University of Technology, 38 Nadbystrzycka Street, 20-618 Lublin, Poland
Bibliografia
  • [1] Irfan, M., Ayub, N., Althobiani, F., Ali, Z., Idrees, M., Ullah, S., Rahman, S., Saeed Alwadie, A., Mohammed Ghonaim, S., Abdushkour, H., Salem Alkahtani, F., Alqhtani, S., & Gas, P. (2022). Energy Theft Identification Using Adaboost Ensembler in the Smart Grids. Computers, Materials & Continua, 72(1), 2141-2158. https://doi.org/10.32604/cmc.2022.025466
  • [2] Wyszkowska, J., Maliszewska, J., & Gas, P. (2023). Metabolic and Developmental Changes in Insects as Stress-Related Response to Electromagnetic Field Exposure. Applied Sciences, 13(17), 9893. https://doi.org/10.3390/app13179893
  • [3] Vasylkiv, N., Kochan, O., Kochan, R., & Chyrka, M. (2009, September). The control system of the profile of temperature field. 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). https://doi.org/10.1109/idaacs.2009.5342994
  • [4] Su, J., Beshley, M., Przystupa, K., Kochan, O., Rusyn, B., Stanisławski, R., Yaremko, O., Majka, M., Beshley, H., Demydov, I., Pyrih, J., & Kahalo, I. (2022). 5G multi-tier radio access network planning based on Voronoi diagram. Measurement, 192, 110814. https://doi.org/10.1016/j.measurement.2022.110814
  • [5] Petroulakis, N., Mattsson, M.-O., Chatziadam, P., Simko, M., Gavrielides, A., Yiorkas, A. M., Zeni, O., Scarfi, M. R., Soudah, E., Otin, R., Schettino, F., Migliore, M. D., Miaoudakis, A., Spanoudakis, G., Bolte, J., Korkmaz, E., Theodorou, V., Zarogianni, E., Lagorio, S., . . . Bogdanova, A. (2023). NextGEM: Next-Generation Integrated Sensing and Analytical System for Monitoring and Assessing Radiofrequency Electromagnetic Field Exposure and Health. International Journal of Environmental Research and Public Health, 20(12), 6085. https://doi.org/10.3390/ijerph20126085
  • [6] Mallik, M., Tesfay, A. A., Allaert, B., Kassi, R., Egea-Lopez, E., Molina-Garcia-Pardo, J.-M., Wiart, J., Gaillot, D. P., & Clavier, L. (2022). Towards Outdoor Electromagnetic Field Exposure Mapping Generation Using Conditional GANs. Sensors, 22(24), 9643. https://doi.org/10.3390/s22249643
  • [7] da L. A. Silva, J., de Sousa, V. A., Jr., Rodrigues, M. E. C., Pinheiro, F. S. R., da Silva, G. S., Mendonça, H. B., de F. H. Silva, R. Q., da Silva, J. V. L., Galdino, F. E. S., de Carvalho, V. F. C., & Medeiros, L. I. C. (2023). Human Exposure to Non-Ionizing Radiation from Indoor Distributed Antenna System: Shopping Mall Measurement Analysis. Sensors, 23(10), 4579. https://doi.org/10.3390/s23104579
  • [8] Bae, H., & Park, S. (2022). Assessment of the Electromagnetic Radiation Exposure at EV Charging Facilities. Sensors, 23(1), 162. https://doi.org/10.3390/s23010162
  • [9] Atanasova, G. L., Atanasov, B. N., & Atanasov, N. T. (2023). Assessment of Electromagnetic Field Exposure on European Roads: A Comprehensive in situ Measurement Campaign. Sensors, 23(13), 6050. https://doi.org/10.3390/s23136050
  • [10] Zeng, Y., Qin, Y., Yang, Y., & Lu, X. (2022). A Low-Cost Flexible Capacitive Pressure Sensor for Health Detection. IEEE Sensors Journal, 22(8), 7665-7673. https://doi.org/10.1109/jsen.2022.3158354
  • [11] Ali, S., Glass, T., Parr, B., Potgieter, J., & Alam, F. (2021). Low Cost Sensor with IoT LoRaWAN Connectivity and Machine Learning-Based Calibration for Air Pollution Monitoring. IEEE Transactions on Instrumentation and Measurement, 70, 1-11. https://doi.org/10.1109/tim.2020.3034109
  • [12] Das, P., Ghosh, S., Chatterjee, S., & De, S. (2022). A Low Cost Outdoor Air Pollution Monitoring Device with Power Controlled Built-In PM Sensor. IEEE Sensors Journal, 22(13), 13682-13695. https://doi.org/10.1109/jsen.2022.3175821
  • [13] Placidi, P., Vergini, C. V. D., Papini, N., Cecconi, M., Mezzanotte, P., & Scorzoni, A. (2023). Low-Cost and Low-Frequency Impedance Meter for Soil Water Content Measurement in the Precision Agriculture Scenario. IEEE Transactions on Instrumentation and Measurement, 72, 1-13. https://doi.org/10.1109/tim.2023.3302898
  • [14] Walczak, M., Bychto, L., Kraśniewski, J., & Duer, S. (2022). Design and evaluation of a low-cost solar simulator and measurement system for low-power photovoltaic panels. Metrology and Measurement Systems, 29(4), 685-700. https://doi.org/10.24425/mms.2022.143067
  • [15] Jakubowski, J. (2020) A study on the calibration of an HPM meter based on a D-dot sensor and logarithmic RF power detector. Metrology and Measurement Systems, 27(4), 673-685. https://doi.org/10.24425/mms.2020.134846
  • [16] Liu, C., Zhao, C., Wang, Y., & Wang, H. (2023). Machine-Learning-Based Calibration of Temperature Sensors. Sensors, 23(17), 7347. https://doi.org/10.3390/s23177347
  • [17] Wang, A., Machida, Y., deSouza, P., Mora, S., Duhl, T., Hudda, N., Durant, J. L., Duarte, F., & Ratti, C. (2023). Leveraging machine learning algorithms to advance low-cost air sensor calibration in stationary and mobile settings. Atmospheric Environment, 301, 119692. https://doi.org/10.1016/j.atmosenv.2023.119692
  • [18] Park, D., Yoo, G.-W., Park, S.-H., & Lee, J.-H. (2021). Assessment and Calibration of a Low-Cost PM2.5 Sensor Using Machine Learning (HybridLSTM Neural Network): Feasibility Study to Build an Air Quality Monitoring System. Atmosphere, 12(10), 1306. https://doi.org/10.3390/atmos12101306
  • [19] Pytka, J. A., Budzyński, P., Tomiło, P., Michałowska, J., Gnapowski, E., Błażejczak, D., & Łukaszewicz, A. (2021). IMUMETER - A Convolution Neural Network-Based Sensor for Measurement of Aircraft Ground Performance. Sensors, 21(14), 4726. https://doi.org/10.3390/s21144726
  • [20] Michałowska, J., Pytka, J., Tofil, A., Krupski, P., & Puzio, Ł. (2021). Assessment of Training Aircraft Crew Exposure to Electromagnetic Fields Caused by Radio Navigation Devices. Energies, 14(1), 254. https://doi.org/10.3390/en14010254
  • [21] Michałowska, J., Tofil, A., Józwik, J., Pytka, J., Legutko, S., Siemiątkowski, Z., & Łukaszewicz, A. (2019). Monitoring the Risk of the Electric Component Imposed on a Pilot During Light Aircraft Operations in a High-Frequency Electromagnetic Field. Sensors, 19(24), 5537. https://doi.org/10.3390/s19245537
  • [22] Pytka, J., Budzyński, P., Tomiło, P., Michałowska, J., Błażejczak, D., Gnapowski, E., Pytka, J., & Gierczak, K. (2022). Measurement of aircraft ground roll distance during takeoff and landing on a grass runway. Measurement, 195, 111130. https://doi.org/10.1016/j.measurement.2022.111130
  • [23] Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery, 15(2), 107-144. https://doi.org/10.1007/s10618-007-0064-z
  • [24] Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S. (2001). Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Knowledge and Information Systems, 3(3), 263-286. https://doi.org/10.1007/pl00011669
  • [25] Bienkowski, P., & Trzaska, H. (2012). Electromagnetic Measurements in the Near Field. (2E) Institution of Engineering and Technology. https://doi.org/10.1049/sbew042e
  • [26] Chen, X., Przystupa, K., Ye, Z., Chen, F., Wang, C., Liu, J., Gao, R., Wei, M., & Kochan, O. (2022). Forecasting short-term electric load using extreme learning machine with improved tree seed algorithm based on Lévy flight. Eksploatacja i niezawodność - Maintenance and Reliability, 24(1), 153-162. https://doi.org/10.17531/ein.2022.1.17
  • [27] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5). https://doi.org/10.1214/aos/1013203451
  • [28] Li, Y., Wang, J., Zhang, T., Hu, H., & Wu, H. (2022). Parameter identification approach using improved teaching and learning based optimization for hub motor considering temperature rise. Metrology and Measurement Systems, 30(1), 99-115. https://doi.org/10.24425/mms.2023.144396
  • [29] Gil, F., Osowski, S., Świderski, B., Słowińska, M. (2023). Deep learning classification and recognition method for milling surface roughness combined with simulation data. Metrology and Measurement Systems, 30(1),139-156. https://doi.org/10.24425/mms.2023.144400
  • [30] Faouzi, J., Janati, H. (2020). A Python package for time series classification. Journal of Machine Learning Research, 21(46), 1-6.
  • [31] Xiong, G., Przystupa, K., Teng, Y., Xue, W., Huan, W., Feng, Z., Qiong, X., Wang, C., Skowron, M., Kochan, O., & Beshley, M. (2021). Online Measurement Error Detection for the Electronic Transformer in a Smart Grid. Energies, 14(12), 3551. https://doi.org/10.3390/en14123551
  • [32] Chengsheng, T., Huacheng, L., & Bing, X. (2017). AdaBoost typical algorithm and its application research. MATEC Web of Conferences, 139, 00222. https://doi.org/10.1051/matecconf/201713900222
  • [33] Sun, L., Qin, H., Przystupa, K., Majka, M., & Kochan, O. (2022). Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sensors, 22(20), 7900. https://doi.org/10.3390/s22207900
  • [34] European Union. (2013). Directive No. 2013/35/EU of the European Parliament and of the Council of 26 June 2013, on the Minimum Health and Safety Requirements Regarding the Exposure of Workers to the Risks Arising from Physical Agents (Electromagnetic Fields). Official Journal of the European Union. L179, 1-21. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013L0035{&}from=PT
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fcbd3b1-810d-4d0a-9fb4-4f61b4e23fc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.