
Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.16, No. 3, 2014 465

Article citation info:
LAi M-H. Optimal number of Minimal Repairs under a Cumulative Damage Model with Cumulative Repair Cost Limit. Eksploatacja 
i Niezawodnosc – Maintenance and Reliability 2014; 16 (3): 464–471.

Min-Tsai LAi

Optimal number Of minimal repairs under a 
Cumulative damage mOdel with Cumulative repair COst limit

Optymalna liCzba napraw minimalnyCh w świetle mOdelu 
sumOwania uszkOdzeń przy OgraniCzOnym łąCznym kOszCie napraw

In this paper, we consider a repair number counting replacement policy under a cumulative damage model, in which the policy 
includes the concept of a cumulative repair cost limit. The system experiences two kinds of shocks: a type I shock causes a random 
amount of damage to the system leading to a serious failure when the total damage exceeds a failure level; or a type II shock 
causes the system into minor failure which can be corrected by minimal repair. When a minor failure occurs, the repair cost will be 
evaluated and minimal repair is executed if the accumulated repair cost is less than a predetermined limit L. The system is replaced 
anticipatively at n-th minor failure, or at the j-th minor failure (j < n) at which the accumulated repair cost exceeds a predeter-
mined limit L, or any serious failure. In order to assess the performance of the proposed maintenance policy and to minimize the 
long-term expected cost per unit time, a mathematical model for the maintained system cost is derived. By minimizing that cost, the 
optimal number n* is also verified finite and unique under certain conditions. Analyses based on numerical results are conducted 
to highlight the properties of the proposed maintenance policy in respect to the different parameters.

Keywords: Cumulative damage model, Cumulative repair cost limit, Replacement policy, Minimal repair.

W przedstawionym artykule omawiamy politykę wymiany systemu opartą na modelu sumowania uszkodzeń polegającą na ob-
liczaniu liczby napraw. Polityka ta obejmuje koncepcję limitu łącznego kosztu napraw. System może być narażony na działanie 
dwóch rodzajów szkodliwych czynników: czynniki I-ego typu powodują losowo określony zakres uszkodzeń systemu, prowadząc 
do poważnej awarii, gdy łącznie uszkodzenia przekraczają poziom awarii; lub czynniki typu II-ego powodujące drobne uszkodze-
nia, które można skorygować poprzez minimalną naprawę. Gdy dochodzi do niewielkiego uszkodzenia, wtedy szacuje się koszt 
naprawy i realizuje minimalną naprawę, jeśli łączny koszt naprawy jest niższy od uprzednio ustalonego limitu L. System zostaje 
prewencyjnie wymieniony albo przy n-tej drobnej awarii albo przy j-tej drobnej awarii (j <n), przy której łączny koszt naprawy 
przekracza uprzednio ustalony limit L lub też przy jakimkolwiek poważnym uszkodzeniu. W celu oceny skuteczności proponowanej 
polityki obsługiwania i zminimalizowania przewidywanego długoterminowego kosztu przypadającego na jednostkę czasu, wypro-
wadzono model matematyczny kosztów dla obsługiwanego systemu. Poprzez minimalizację tych kosztów, określono również opty-
malną liczbę napraw n*, która w pewnych warunkach jest liczbą skończoną i niepowtarzalną. W oparciu o wyniki numeryczne,  
przeprowadzono analizy mające na celu naświetlenie właściwości proponowanej polityki obsługiwania w odniesieniu do różnych 
parametrów.

Słowa kluczowe: Model sumowania uszkodzeń, limit łącznych kosztów napraw, polityka wymiany, naprawa 
minimalna.

1. Introduction.

Most production systems suffer increasing wear with usage or 
age and are subject to random failures resulting from this deteriora-
tion (Wang (2002)) and most of them are maintained or repairable 
systems. Moreover, for some systems, such as aircrafts, submarines, 
military systems, and nuclear systems, it is very important to maintain 
a system to prevent failures because it can be dangerous or disas-
trous. The growing importance of maintenance has generated an in-
creasing interest in the development and implementation of optimal 
maintenance strategies for improving system availability, preventing 
the occurrence of system failures, and reducing maintenance costs of 
deteriorating systems. In the deteriorating system, the level of deterio-
ration is represented by a degradation process, such as corrosion, wear 
out, material fatigue, and fatigue-crack-growth in engineering appli-
cations or markers of health status and quality of life data in medical 
settings. Cumulative damage models are often used to describe these 
above situations. 

Cumulative damage models are a special class of mathematical 
models within reliability theory that describe the probability of failure 

of a given system under the impact of a damaging environment. The 
system suffers damage due to shocks and fails when the total amount 
of damage exceeds a failure level K, and it generates cumulative dam-
age process. Recently, Nakagawa (2007) summarized sufficiently PM 
policies and their optimization problems for cumulative damage mod-
els. The replacement models where a system is replaced when the 
total damage exceeds a threshold level k can refer Feldman (1976), 
Nagakawa (1976) and Satow et al. (2000). The replacement models 
where a unit is replaced at a planned time T were proposed in Taylor 
(1975), Mizuno (1986), Nakagawa (1980, 2007), Qian et al. (1999) 
and Perry (2000). Furthermore, the replacement models where a sys-
tem is replaced at shock N were proposed in Nagakawa (1984). 

Nakagawa and Kijima (1989) considered a standard cumulative 
damage model with minimal repair at failure to obtain the optimal 
values T*, N*, and k*, individually. Kijima and Nakagawa (1991) con-
sidered a cumulative damage shock model with imperfect PM policy. 
Satow and Nakagawa (1997) considered a modified cumulative dam-
age model that the damage can be produced by shocks or increased 
with time at constant rate a. The optimal values T*, N*, and k* are 
obtained individually. Qian et al. (1999) presented an extended cu-
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mulative damage model with two kinds of shocks: failure shock and 
damage shock. This model is applied to the backup of files in a da-
tabase system and the optimal replacement period is obtained. Satow 
et al. (2000) considered a cumulative damage model with two types 
of damages that are both from external shocks and deterioration with 
time. The optimal threshold k* is obtained. 

Qian et al. (2003) considers an extended cumulative damage 
model with maintenance at each shock when the total damage does 
not exceed a failure level K; with minimal repair at each shock when 
the total damage exceeds a failure level K, and with replacement at 
time T or at failure N. The optimal values T* and N* are obtained. 
Qian et al. (2005) applied cumulative damage model for a used sys-
tem with initial damage level. A unique optimal T* or managerial 
level k* which minimizes the expected cost rate are obtained. Ito and 
Nakagawa (2011) compared the standard cumulative damage model 
with two other cumulative damage models: (1) the amount of damage 
due to shocks is measured only at periodic time; and (2) the amount of 
damage increases linearly with time. This cumulative damage model 
can be applied to the garbage collection policies for a database sys-
tem in Satow et al.(1996) and applied to obtain the optimal full and 
cumulative backup policies successfully for a database system in Qian 
et al. (1999, 2005). And, it is also applied to describe the cumulative 
damage of a fibrous carbon composite in Padgett(1998). 

Zhao et al. (2012) considered a periodical replacement model that 
the unit is replaced at a planned time or when the total damage ex-
ceeds a failure level, whichever occurs first, and undergoes minimal 
repair when independent damage occurs. Furthermore, they consid-
ered a modified model that the total damage is measured at periodic 
times and increases approximately with time linearly. Zhao and Na-
kagawa (2012) considered age and periodic replacement last models 
with working cycles and applied this type of replacement policy to a 
standard cumulative damage model. Zhao et al. (2013) applied the 
notion of maintenance last to a standard cumulative damage model, in 
which the unit undergoes preventive maintenances before failure at a 
planned time T, at a damage level k, or at a shock number N, which-
ever occurs last. 

With regard to repair-cost-limit policies allowing minimal repairs, 
Lai (2007) applied the concept of cumulative repair cost limit into 
replacement model that included the information of all repair costs to 
decide whether the system should be repaired or replaced. Following 
the work of Lai (2007), Chien, et al. (2009) extended the work of Lai 
(2007) by introducing the random lead time for replacement delivery. 
Chien, et al. (2010) modified the work of Chien, et al. (2009) by add-
ing an age-dependent type of failure. Chang, et al. (2010) presented a 
model for determining the optimal number of minimal repairs before 
replacement. Chang, et al. (2013) modified the work of Chang, et al. 
(2010) by allowing an age-dependent failure type. Sheu, et al. (2010) 
presented a generalized model for determining the optimal replace-
ment policy based on multiple factors (or more information) such as 
the number of minimal repairs before replacement and the cumulative 
repair cost limit. 

In this study, we present a repair number counting replacement 
policy with cumulative repair cost limit where the system is subject 
to a cumulative damage model. The concept of cumulative repair cost 
limit adopts the entire repair cost history to make decision for repair-
ing or replacing the system. The remainder of the paper is organized 
as follows: Section 2 presents the model formulation and optimiza-

tion. In Section 3, the long-term expected cost per unit time ( , )C n L  
is derived and the conditions characterize the optimal n* is developed. 
A computational example is provided to demonstrate the above results 
in Section 4. Section 5 provides conclusions

2. Problem formulation

Assume that the system is subject to shocks which randomly oc-

cur according to a non-homogeneous Poisson process 0{ ( )}tN t ≥  with 
intensity rate λ(t). Whenever a shock occurs, it will be type-I shock 
with probability  (0 1)p p< ≤  and type-II shock with probability

 ( 1)q p q+ = . By using the decomposition theorem of Poisson proc-
ess, it is noted that type-I and type-II shocks occur according to two 

non-homogeneous Poisson processes 1 0{ ( )}tN t ≥  and 2 0{ ( )}tN t ≥ with 

intensity rates pλ(t) and qλ(t), respectively. And, 1( )N t  and 2( )N t  de-
note the numbers of type-I and type-II shocks occurred during [0, t], 
respectively. 

The type-I shocks whenever occur cause some damage to the sys-
tem and these damages are additive. When a type-I shock occurs, a 

random amount iD  of damage from i-th type-I shock has a probabil-

ity distribution ( ) ( )iH d P D d= ≤  and a finite mean dµ , i=1,2,3,…. 
Then the accumulated damage to the the j-th type I shock after the 

installation 1
j

j iiW D== ∑  has a distribution function:

( )

1 2

1                            0  
( ) ( )

( ),     1,2,3,
j

j
j

j
P W w H w

H H H w j
=≤ = =  ∗ ∗ ∗ =  

,   (1)

where the “*” mark is denoted the Stieltjes convolution of the distri-
bution H(d) with itself. The probability of j type-I shocks in [0, t] is 
given by: 

 ( ) ( )1 1
1 1,

( ) exp ( )
( ( ) ) ( ),

!

j

j
m t m t

P N t j P t
j

−
= = =  (2)

where  
1  0
( ) ( )tm t p x dxλ= ∫  denote the mean number of type-I shock 

in [0,t].
If the total damage exceeds a failure level K, a serious failure oc-

curs. The probability that a serious failure occurs at the j-th type-I 

shock is ( 1) ( )( ) ( )j jH K H K− − . Let a random variable Z denote the 
occurrence time of the first serious failure, so the survival function of 
Z is given by: 

1
( )

( ) 1 1,
0 0

( ) ( ) ( ) ( ( ) , ) ( ) ( )j
z N t j j

j j
F t P Z t P Y K P N t j Y K P t H K

∞ ∞

= =
= > = < = = < =∑ ∑   (3)

and the density function of Z is f t p t H K H K P tz
j j

j
j

( ) ( ) ( ) ( ) ( )( ) ( )
,= −( )+

=

∞
∑λ 1

1
0

.

Each type-II shock makes the system into minor failure. Hence, 
the probability of j minor failures in [0, t] is given by:

 P N t j
m t m t

j
P t

j

j( ( ) )
( ) exp( ( ))

!
( ),2

2 2
2= =

( ) −
=  (4)

where  
2  0
( ) ( )tm t q x dxλ= ∫  denote the mean number of minor failures 

in [0,t].  

Moreover, let 2 jS
 
( j=1, 2, 3, …) denote the occurrence time of 

the j-th minor failure, where 20 0S = , then the distribution function 

of a random variable 2 jS  is given by:
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 2 2 2,( ) ( ( ) ) ( ), 1, 2, 3, ...,j i
i j

P S t P N t j P t j
∞

=
≤ = ≥ = =∑

and

( )
2

2 2
2 2, 1

( ) exp( ( ))
( ) ( ) ( ) ( )

!j

i

s j j
i j

m t m td df t P S t q t P t
dt dt i

λ
∞

−
=

−
= ≤ = =∑ .

When a minor failure occurs, the repair cost due to this minor fail-

ure is evaluated. Suppose that a minimal repair cost iX  due to the i-th 
minor failure has a nonnegative independent and identical distribution 

function ( ) ( )iG x P X x= ≤  and a finite mean xµ , i=1,2,3,…. Then, 

the accumulated repair cost till to j-th minor failure 1
j

j iiY X== ∑  has 
a distribution function:

 ( )

1 2

1                            0  
( ) ( )

( ),     1,2,3,
j

j
j

j
P Y y G y

G G G y j
=≤ = =  ∗ ∗ ∗ =  

.    (5)

If the accumulated repair cost exceeds a predetermined limit L, 
then the system must be replaced at this minor failure. Let a random 
variable U denote the occurrence time when the accumulated repair 
cost exceeds a predetermined limit L, so the survival function of U is 
given by:

2
( )

( ) 2 2,
0 0

( ) ( ) ( ) ( ( ) , ) ( ) ( )j
u N t j j

j j
F t P U t P Y L P N t j Y L P t G L

∞ ∞

= =
= > = < = = < =∑ ∑  (6)

and the density function of U is f t q t G L G L P tu
j j

j
j

( ) ( ) ( ) ( ) ( )( ) ( )
,= −( )+

=

∞
∑λ 1

2
0

.

In this model, preventive maintenance policy is executed accord-
ing to the following scheme. Preventive replacement is carried out at 
the n-th minor failure or at the occurrence time of one minor failure, in 
which the accumulated repair cost at this moment exceeds a predeter-
mined limit L, and failure replacement is executed at the occurrence 
time of a serious failure. According to the above scheme, the replace-
ment of the system can occur at three different 
situations and the probabilities of three situa-
tions will be introduced as follows.

First, if the accumulated repair cost till to 
(n-1)-th minor failure is less than L and the 
n-th minor failure precedes a serious failure, 
then preventive replacement is executed at the 
n-th minor failure. Therefore, the probability 
of situation 1 is given by:

( 1)
2 1 2 2, 10 0

( ,  ) ( ) ( ) ( ) ( ) ( )n
n n n z nP Z s Y L dF s G L F t P t q t dtλ∞ ∞−

− −> < =∫ ∫ . (7)

Because the occurrences of minor and serious failures are mutu-
ally independent. 

Second, if the j-th (j<n) minor failure occurs and the accumulated 
repair cost till to this failure exceeds L, and no serious failure has oc-

curred, then the system will be replaced by a new one at time 2 jS , 
j=1,2,3,…, n-1. Therefore, the probability of situation 2 is given by:

P Y L Y W S G L G L P W sj j j
j

n
j j

j( , ) ( ) ( ) ( )( ) ( )
−

=

−
− ∞

< < > = −( ) >∑ ∫1 1 2
1

1
1

10 2 ddF s

G L G L F t P t q t d

j
j

n

j j
z j

( )

( ) ( ) ( ) ( ) ( )( ) ( )
,

2
1

1

1
0 2 1

=

−

− ∞
−

∑

∫= −( ) λ tt
j

n

=

−
∑

1

1
 (8)

Finally, if a serious failure occurs before time 2 jS , j=1,2,…, n-1 
and the accumulated repair cost till to this serious failure is less than 
L, then the system will be replaced at serious failure. Therefore, the 
probability of situation 3 is given by:

 

1 1
( )

2 2,0
0 0

( ( ) , ) ( ) ( ) ( )
n n

j
j j z

j j
P N z j Y L G L P t dF t

− − ∞

= =
= < =∑ ∑ ∫  (9)

More specifically, we also require the following assumptions:
(a1) The system is monitored continuously so that minor or 

serious failures can be detected instantaneously.  
(a2) The times taken for minimal repair or replacement are 

very smaller than the mean time between failures. As a 
consequence, we can ignore those and treat those as be-
ing zero. 

(a3) The steady state case is considered.  
Finally, Replacement at n-th minor failure or at which the accu-

mulated repair cost exceeds limit L costs 0C  and is called preven-

tive replacement, while replacement at serious failure costs 1C  and is 

called as failure replacement in which 1 0C C> . This problem is just 
to find an optimal n* to minimize the long-term expected cost per unit 

time ( , )C n L  in the steady state case.

3. Long-term expected cost per unit time

It is well known that if a replacement is performed, a new re-
placement cycle will restart. Therefore, the continuous replacement 

cycles will constitute a renewal process. Let 1( )E V  and 1( )E R  denote 
the mean length of a replacement cycle and the expected total cost 
incurred during a replacement cycle, respectively. Using the renewal-
reward theorem, we can observe that the long-term expected cost per 
unit time in the steady-state case is given by (Ross (1983)):

 1 1( , ) ( ) ( )C n L E R E V= .  

Under our defined preventive maintenance policy, the expected 

length of a replacement cycle 1( )E V  is given by:

If the system is replaced preventively following the n-th minor 

failure, the total cost is 1
0 1

n
i iC X−
=+∑ . When the system is replaced 

preventively following the j-th (j<n) minor failure because the accu-
mulated repair cost exceeds L, the total cost will be 

1
0 1  ,  1,2,..., 1j

iiC X j n−
=+ = −∑ . However, if the replacement is exe-

cuted at serious failure, then the total cost is 2 ( )
1 1  N Z

iiC X=+∑ . There-

fore, the expected total cost 1( )E R  can be derived as follows: 

 

E V G L t F t P t q t dt G L G Ln
z n

j j( ) ( ) ( ) ( ) ( ) ( ) (( )
,

( ) ( )
1

1
2 10

1= × + −−
−

∞ −∫ λ )) ( ) ( ) ( ),( ) ×
∞

−
=

−

∫∑ t F t P t q t dtz j
j

n

0 2 1
1

1
λ

                                                + ×
=

− ∞∑ ∫G L t P t dFj

j

n
j z

( )
,( ) ( ) (

0

1
20

tt

G L F t P t dtj

j

n
z j

)

( ) ( ) ( )( )
,         =

=

− ∞∑ ∫
0

1
20

(10)
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 +µ λ tt
j

n

0
1

1 ∞

=

−
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, (11)

where ( )x iE Xµ = . 

Combining (10) and (11), the long-term expected cost per unit time ( , )C n L  can be obtained as follows:

 

1 1 ( ) ( )
0 1 0 2, 2, 1 0 0

0 1
1

( )
2,0

0

C ( ) ( ) ( ) ( )+ ( ) ( ) ( ) ( )
( , )

( ) ( ) ( )

n n
j j

j z x z j
j j

n
j

z j
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C C G L P t dF t G L F t P t q t dt
C n L

G L F t P t dt

µ λ
− −∞ ∞

−
= =

− ∞

=

+ −

=
∑ ∑∫ ∫

∑ ∫
 (12)

In the steady-state case, we want to find an optimal number n* that minimises ( , )C n L  under the following assumptions: 

(a1) λ(t) is a continuous and increasing function of t with ( ) lim ( )
t

tλ λ
→∞

∞ = , which may be infinite. 

(a2) ( ) ( )nG y  is PF2 (a Polya frequency function of order 2). 

From Lemma 3.7 in Barlow and Proschan (1975), it is known that ( ) ( )nG L  is decreasing in n for all L > 0. In addition, we can observe that 
( ) ( )nG L  is PF2 if and only if ( ) ( 1)( ) ( )n nG L G L−  is decreasing in n for all L > 0 (Gottlieb 1980, p. 749). 

If an optimal *n  exists, then the inequalities ( 1, ) ( , )C n L C n L+ ≥  and ( , ) ( 1, )C n L C n L< −  are both satisfied for some finite n. In the 

derivation of these inequalities, we can see that the inequalities ( 1, ) ( , )C n L C n L+ ≥  and ( , ) ( 1, )C n L C n L< − are equivalent to the inequalities
 

0( )K n C≥  and 0( 1)K n C− < , where:

 
K n
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 0

 (13)

Therefore, if we can show that ( )K n  is an increasing function of n and 0lim ( )
n

K n C
→∞

> , then n* is finite and unique. To show that ( )K n  is an 
increasing function of n, the following lemma is required.
Lemma 1. Under assumptions (a1) and (a2), the following results are true:

 (1) 2, 2,0 0
( ) ( ) ( ) ( )n n z z nA P t dF t F t P t dt∞ ∞

= ∫ ∫  is increasing in n, and lim ( )n
n

A pλ
→∞

= ∞ .

 (2) 2, 2, 10 0
( ) ( ) ( ) ( ) ( )n z n z nB F t P t q t dt F t P t dtλ∞ ∞

+= ∫ ∫  is increasing in n, and lim ( )n
n

B qλ
→∞

= ∞ .

A proof of Lemma 1 can be found in Chang et al. (2010). Moreover, ( )K n  is an increasing function of n is equivalent to the condition 
( 1) ( ) 0K n K n+ − >  for all n. Consequently,
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Using Lemma 1, ( 1) ( )K n K n+ −  can be obtained as follows: 
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ing in n. In summary, the conditions for the existence and the uniqueness of an optimal value *n  are expressed in the following theorem: 
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In equation (13), we know that 0(0) 0K C= < . If 0lim ( )
n

K n C
→∞

> , we 

can observe that there is a finite n such that equation (15) is satisfied. 

In addition, the optimal value *n  is unique according to the fact that 
( )K n  is increasing in n.

In our model, if 0K = , then F t p x dxz
t( ) exp ( )= −( )∫ λ

 
 
0

 and 

( , )C n L  is the same as ( )C n  in Chien, et al. (2010). 

4. Numerical example

We consider that the intensity rate λ(t) of arrival shocks is taking as 

 1( ) , 0, 1.t tβλ λ λ β−= > >  (16)

We assume that the shape parameter is set at β=2, and that λ(t) = λt 
is an increasing function of t. Let two replacement costs C0 and C1 be 
1000 and 1500, respectively. The amount of damage from consecu-
tive type-I shocks are independently and identically exponential ran-
dom variables with finite mean µd =100. And, the failure level of the 
system is set at K=800. The costs for consecutive minimal repair are 
also independently and identically exponential random variables with 

finite mean µx =50. In addition, the cumulative 
repair cost limit L is fixed to be 500. 

Because λ(t) is strictly increasing to ∞  as 
t →∞ , ( )K n  is increasing in n. Thus, n* is finite 
and unique. Using the software MAPLE, n* and the 
minimum long-term expected cost per unit time 

*( , )C n L  are computed for various values of the 
parameters λ and p are listed in Tables 1 and 2. 

From Tables 1 and 2, we have the following conclusions: 
As (1) λ increases, the optimal n* is unchanged, but the minimum 

*( , )C n L  increases. This situation is due to the denominator 
of the equation (12), i.e., the expected length of a replacement 
cycle decreases. A greater value of λ implies that the arriving 
shocks occur more frequently, so the replacement period must 
be shorter to prevent the occurrence of random failures.
As (2) p increases (i.e., (1-p) decreases), the optimal n* decreases, 
but the minimum *( , )C n L  increases. A greater value of p im-
plies that serious failures occur more easily, so the replacement 
period must also be shorter, i.e., the optimal n* must be smaller, 
to prevent the occurrence of serious failures.
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When the ratio (3) L / µx is larger, i.e. this model allows more minor 
failures before replacement, we can see that the optimal n* is 

unchanged and the minimum *( , )C n L  decreases. For a fixed 

ratio K / µd, the decreasing magnitudes of the optimal *( , )C n L  
are significantly smaller than the increment of L / µx. 
When the ratio (4) K / µd is larger, i.e. this model allows more type 
I shocks to occur before serious failure, we can see that the op-

timal n* increases but the minimum *( , )C n L  decreases. The 

variations in the optimal n* and *( , )C n L  with regard to K / µd 
are significantly larger than that of L / µx. Therefore, the ratio 
K / µd is more important than the ratio L / µx when determining 
the optimal replacement period.

5. Conclusions

In this article, a repair number counting replacement policy based 
on a cumulative repair-cost limit under a standard cumulative dam-
age model is introduced. The long-term expected cost per unit time 

( , )C n L  in operating the system was developed which incorporating 
costs due to holding minimal repair and different forms of replacement 
state. The optimal number n* of minimal repair, which minimizes the 
cost rate function under a fixed cumulative repair-cost limit L, was 
shown. The existence, uniqueness and structural properties were also 
proposed. This research verifies that under some specific conditions, 
the optimal number n* of minimal repair is finite and unique under 
fixed L and K. This model provided a general framework for analyz-
ing the maintenance policies for a system subject to cumulative dam-
age models, so two previous models in the literature were the special 
cases of our model. We also demonstrated some numerical examples.

However, some assumptions are possible limitations in this re-
search, such as the repair and replacement times were negligible, and 
the repairs are minimal and the repaired system is as bad as old. In 
some practical situations, it would seem to be more practical to con-
sider the concept of imperfect repairs or multi-unit systems. Taking 
these realistic factors into consideration in the proposed policy is one 
direction for future research. 

Table 1. Optimal n* and *( , )C n L  at different λ and p, when L/µx =10 and K/µd =8

p=0.3 p=0.4 p=0.5 p=0.6 p=0.7

n* *( , )C n L n* *( , )C n L n* *( , )C n L n* *( , )C n L n* *( , )C n L

λ=1.0 12 292.9909184 9 294.9119827 7 301.3978537 5 310.5921124 4 321.3561456

λ=1.5 12 358.8391246 9 361.1919384 7 369.1354753 5 380.3960969 4 393.5792913

λ=2.0 12 414.3517304 9 417.0685255 7 426.2409323 5 439.2435780 4 454.4662197

λ=2.5 12 463.2593182 9 466.2967872 7 476.5518497 5 491.0892494 4 508.1086802

Table 2. Optimal n* and *( , )C n L  at different values of L/µx and K/µd when p=0.5, λ=2

L/µx =6 L/µx =8 L/µx =10 L/µx =12

n* *( , )C n L n* *( , )C n L n* *( , )C n L n* *( , )C n L

K/µd =6 6 476.5594134 6 473.0556584 6 472.1746264 6 471.9659801

K/µd =8 7 432.9678584 7 427.7229495 7 426.2409323 7 425.8473161

K/µd =10 8 406.0023083 8 398.6716537 8 396.3677583 8 395.6877385

K/µd =12 9 388.8043367 9 379.1945801 9 375.8645467 9 374.7818536
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