PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibilities of phosphorous magnetic resonance spectroscopy (31P MRS) in brain diagnostics

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Możliwości fosforowej spektroskopii rezonansu magnetycznego (31P MRS) w diagnostyce mózgu
Języki publikacji
EN
Abstrakty
EN
Phosphorous Magnetic Resonance Spectroscopy (31P MRS) is an interesting technique with a great potential in medical diagnostics. It is a perfect supplement to the examinations concerning information on the biochemical composition of the examined tissue, the level of metabolites containing phosphorus atoms, and indirectly, the metabolism of the tissue. Although the 31P MRS was historically the first known MR spectroscopy technique, it is currently not used as a diagnostic standard in spite of its numerous advantages. The purpose of this work is to present the 31P MRS method, particularly regarding its wide diagnostic capabilities.
PL
Fosforowa spektroskopia rezonansu magnetycznego (31P MRS) jest interesującą techniką o dużych możliwościach w diagnostyce medycznej. Stanowi idealne uzupełnienie badań o informacje dotyczące składu biochemicznego badanej tkanki, poziomu metabolitów zawierających w swoim składzie atomy fosforu, a więc pośrednio o metabolizmie tkanki. Choć historycznie spektroskopia 31P MRS było pierwszą znaną metodą spektroskopową MR, obecnie nie jest stosowana standardowo w diagnostyce, mimo swoich licznych zalet. Celem pracy zaprezentowanie metody 31P MRS, szczególnie jej szerokich możliwości diagnostycznych.
Wydawca
Rocznik
Strony
246--252
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Uniwersytet Jagielloński Collegium Medicum, Wydział Lekarski, Katedra Radiologii, 31-501 Kraków, ul. Kopernika 19
Bibliografia
  • [1] M. Cichocka: Techniki obrazowania rezonansu magnetycznego (MR), Inżynier i Fizyk Medyczny, vol. 4, 2015, s. 313-318.
  • [2] C.S. Andrade, M.C. Otaduy, E.J. Park, C.C. Leite: Phosphorus-31 MR spectroscopy of the human brain - technical aspects and biomedical applications, International journal of current research and review, vol. 6, 2014, s. 41-57.
  • [3] M. Cichocka, A. Urbanik: Widmo protonowej spektroskopii rezonansu magnetycznego (1H MRS) mózgu dorosłego człowieka, Inżynier i Fizyk Medyczny, vol. 6, 2017, s. 193-196.
  • [4] R.A. de Graaf: In vivo NMR spectroscopy: principles and techniques, John Wiley & Sons, 2007.
  • [5] J.M. Tognarelli, M. Dawood, M.I. Shariff, V.P. Grover, M.M. Crossey, I.J. Cox, S.D. Taylor-Robinson, M.J. McPhail: Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians, Journal of Clinical and Experimental Hepatology, vol. 5, 2015, s. 320-328.
  • [6] B. Szuflitowska: Zastosowanie spektroskopii rezonansu magnetycznego w diagnostyce guzów mózgu, Acta Bio-Optica et Informatica Medica Inżynieria Biomedyczna, vol. 22, 2016, s. 46-55.
  • [7] M. Backens: Technik der Protonen- und Phosphor-MR-Spektroskopie, Der Radiologe, vol. 57, 2017, s. 428-437.
  • [8] D. Maintz, W. Heindel, H. Kugel, R. Jaeger, K.J. Lackner: Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours, NMR in Biomedicine, vol. 15, 2002, s. 18-27.
  • [9] P.K. Mandal, H. Akolkar, M. Tripathi: Mapping of hippocampal pH and neurochemicals from in vivo multi-voxel 31P study in healthy normal young male/female, mild cognitive impairment, and Alzheimer's disease, Journal of Alzheimers Disease, vol. 31, 2012, s. 75-86.
  • [10] D.H. Ha, S. Choi, J.Y. Oh, S.K. Yoon, M.J. Kang, K.U. Kim: Application of 31P MR spectroscopy to the brain tumors, Korean Journal of Radiology, vol. 14, 2013, s. 477-86.
  • [11] B. Wcislo, M. Cichocka, A. Urbanik: Phosphorus Spectroscopy of Calf Muscles before and after Exercise, Polish Journal of Radiology, vol. 79, 2014, s. 328-32.
  • [12] M. Cichocka, J. Kozub, A. Urbanik: PH Measurements of the Brain Using Phosphorus Magnetic Resonance Spectroscopy ((31)PMRS) in Healthy Men - Comparison of Two Analysis Methods, Polish Journal of Radiology, vol. 80, 2015, s. 509-14.
  • [13] J.H. Lee, R.A. Komoroski, L.W. Chu, J. Dudley: Methods and applications of phosphorus NMR spectroscopy in vivo, Annual Reports on NMR Spectroscopy, vol. 75, 2012, s. 115-160.
  • [14] J.H. Hwang, C.S. Choi: Use of in vivo magnetic resonance spectroscopy for studying metabolic diseases, Experimental & Molecular Medicine, vol. 47, 2015, s. 139.
  • [15] F.C. Er, G.H. Hatay, E. Okeer, M. Yildirim, B. Hakyemez, E. Ozturk-Isik: Classification of phosphorus magnetic resonance spectroscopic imaging of brain tumors using support vector machine and logistic regression at 3T, Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2014, s. 2392-2395.
  • [16] G. Hamilton, J.M. Allsop, N. Patel, D.M. Forton, H.C. Thomas, C.P. O'Sullivan, J.V. Hajnal, S.D. Taylor-Robinson: Variations due to analysis technique in intracellular pH measurements in simulated and in vivo 31P MR spectra of the human brain, Journal of Magnetic Resonance Imaging, vol. 23, 2006, s. 459-464.
  • [17] M.R. Estilaei, G.B. Matson, G.S. Payne, M.O. Leach, G.Fein, D.J. Meyerhoff: Effects of abstinence from alcohol on the broad phospholipid signal in human brain: an in vivo 31P magnetic resonance spectroscopy study, Alcoholism: Clinical and Experimental Research, vol. 25, 2001, s. 1213-1220.
  • [18] M. Ulrich, T. Wokrina, G. Ende, M. Lang, P. Bachert: 31P-{1H} echo-planar spectroscopic imaging of the human brain in vivo, Magnetic Resonance in Medicine, vol. 57, 2007, s. 784-790.
  • [19] J.E. Jensen, J. Miller, P.C. Williamson, R.W. Neufeld, R.S. Menon, A. Malla, R. Manchanda, B. Schaefer, M. Densmore, D.J. Drost: Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla, Psychiatry Research, vol. 146, 2006, s. 127-135.
  • [20] S. Sohlberg, A.K. Wikstrom, M. Olovsson, P. Lindgren, O. Axelsson, A. Mulic-Lutvica, J. Weis, J. Wikstrom: In vivo 31P-MR spectroscopy in normal pregnancy, early and late preeclampsia: a study of placental metabolism, Placenta, vol. 35, 2014, s. 318-323.
  • [21] H. Hamakawa, J. Murashita, N. Yamada, T. Inubushi, N. Kato, T. Kato: Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder, Psychiatry and Clinical Neurosciences, vol. 58, 2004, s. 82-98.
  • [22] H.P. Volz, R. Rzanny, S. Riehemann, S. May, H. Hegewald, B. Preussler, G. Hubner, W. A. Kaiser, H. Sauer: 31P mag-netic resonance spectroscopy in the frontal lobe of major depressed patients, European Archives of Psychiatry and Clinical Neurosciences, vol. 248, 1998, s. 289-295.
  • [23] C.S. Andrade, M.C. Otaduy, K.D. Valente, D.F. Maia, E.J. Park, R.M. Valerio, M.H. Tsunemi, C.C. Leite: Phosphorus magnetic resonance spectroscopy in malformations of cortical development, Epilepsia, vol. 52, 2011, s. 2276-2284.
  • [24] P.B. Barker, E.J. Butterworth, M.D. Boska, J. Nelson, K.M. Welch: Magnesium and pH imaging of the human brain at 3.0 Tesla, Magnetic Resonance in Medicine, vol. 41, 1999, s. 400-406.
  • [25] B.K. Puri, S.J. Counsell, G. Hamilton: Brain cell membrane motion-restricted phospholipids: a cerebral 31-phosphorus magnetic resonance spectroscopy study of patients with schizophrenia, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol. 79, 2008, s. 233-235.
  • [26] R.A. Komoroski, J.M. Pearce, R.E. Mrak: 31P NMR spectroscopy of phospholipid metabolites in postmortem schizo-phrenic brain, Magnetic Resonance in Medicine, vol. 59, 2008, s. 469-474.
  • [27] X.H. Zhu, H. Qiao, F. Du, Q. Xiong, X. Liu, X. Zhang, K. Ugurbil, W. Chen: Quantitative imaging of energy expenditure in human brain, Neuroimage, vol. 60, 2012, s. 2107-2117.
  • [28] M.M. Chaumeil, J. Valette, M. Guillermier, E. Brouillet, F. Boumezbeur, A.S. Herard, G. Bloch, P. Hantraye, V. Lebon: Multimodal neuroimaging provides a highly consistent picture of energy metabolism, validating P-31 MRS for measuring brain ATP synthesis, Proceedings of the National Academy of Sciences of the United States of America, vol. 106, 2009, s. 3988-3993.
  • [29] B.P. Forester, Y.A. Berlow, D.G. Harper, J.E. Jensen, N. Lange, M.P. Froimowitz, C. Ravichandran, D.V. Iosifescu, S.E. Lukas, P.F. Renshaw, B.M. Cohen: Age-related changes in brain energetics and phospholipid metabolism, NMR in Biomedicine, vol. 23, 2010, s. 242-250.
  • [30] X.F. Shi, P.J. Carlson, T.S. Kim, Y.H. Sung, T.L. Hellem, K.K. Fiedler, S.E. Kim, B. Glaeser, K. Wang, C.S. Zuo, E.K. Jeong, P.F. Renshaw, D.G. Kondo: Effect of altitude on brain intracellular pH and inorganic phosphate levels, Psychiatry Research, vol. 222, 2014, s. 149-156.
  • [31] C.S. Andrade, M.C. Otaduy, K.D. Valente, E.J. Park, A.F. Kanas, M.R. Silva Filho, M.H. Tsunemi, C.C. Leite: Widespread pH abnormalities in patients with malformations of cortical development and epilepsy: a phosphorus-31 brain MR spectroscopy study, Brain and Development, vol. 36, 2014, s. 899-906.
  • [32] O.A. Petroff, J.W. Prichard, K.L. Behar, J.R. Alger, J.A. den Hollander, R.G. Shulman: Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy, Neurology, vol. 35, 1985, s. 781-788.
  • [33] O.A. Petroff, J.W. Prichard: Cerebral pH by NMR, Lancet, vol. 2, 1983, s. 105-106.
  • [34] J. Novak, M. Wilson, L. Macpherson, T.N. Arvanitis, N.P. Davies, A.C. Peet: Clinical protocols for 31P MRS of the brain and their use in evaluating optic pathway gliomas in children, Eurean Journal of Radiology, vol. 83, 2014, s. 106-112.
  • [35] N. Patel, D.M. Forton, G.A. Coutts, H.C. Thomas, S.D. Taylor-Robinson: Intracellular pH measurements of the whole head and the basal ganglia in chronic liver disease: a phosphorus-31 MR spectroscopy study, Metabolic Brain Disease, vol. 15, 2000, s. 223-240.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fca015d-9052-40b8-a877-bcbd7bb6ef03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.