PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A continuous heart disease monitoring system is one of the significant applications specified by the Internet of Things (IoT). This goal might be achieved by combining sophisticated expert systems with extensive healthcare data on heart diseases. Several machine learning-based methods have recently been proven for predicting and diagnosing cardiac illness. However, these algorithms are unable to manage high-dimensional information due to the lack of a smart framework that can combine several sources to anticipate cardiac illness. The Fuzzy-Long Short Term Memory (LSTM) model is used in this work to present a unique IoT-enabled heart disease prediction method. The benchmark data for the experiment came from public sources and collected via wearable IoT devices. An improved Harris Hawks Optimization (HHO) called Population and Fitness-based HHO (PF-HHO) is utilized to select the best features, with the objective function of correlation maximization within the same class and correlation minimization among different classes. The scientific contributions of the health care monitoring system are depicted here that help to improve heart disease healthcare efficiency and also it can be reducing the death rate in the current world. The important section of this persistent healthcare mode is the real-world monitoring system. The simulation outcomes proved that the recommended approach is more successful at predicting heart illness than existing technologies.
Twórcy
  • Department of Electrical Electronics and Communication Engineering, GITAM Deemed to be University, Visakhapatnam, India
  • Department of Electrical Electronics and Communication Engineering, GITAM Deemed to be University, Visakhapatnam, India
  • Department of Instrument Technology AU College of Engineering, Andhra University, Visakhapatnam, India
  • Department of Instrument Technology AU College of Engineering, Andhra University, Visakhapatnam, India
Bibliografia
  • [1] Ramprakash P, Sarumathi R, Mowriya R, Nithyavishnupriya S. Heart disease prediction using deep neural network. In: 2020 International Conference on Inventive Computation Technologies (ICICT). p. 666–70. https://doi.org/10.1109/ICICT48043.2020.9112443.
  • [2] Xiao C, Li Y, Jiang Y. Heart coronary artery segmentation and disease risk warning based on a deep learning algorithm. IEEE Access 2020;8:140108–21. https://doi.org/10.1109/ACCESS.2020.3010800.
  • [3] Vincent Paul SM, Balasubramaniam S, Panchatcharam P, Malarvizhi Kumar P, Mubarakali A. Intelligent framework for prediction of heart disease using deep learning. Arabian J Sci Eng 2022;47(2):2159–69.
  • [4] Mehmood A, Iqbal M, Mehmood Z, Irtaza A, Nawaz M, Nazir T, et al. Prediction of heart disease using deep convolutional neural networks. Arab J Sci Eng 2021;46(4):3409–22.
  • [5] Arul Jothi K, Subburam S, Umadevi V, Hemavathy K. Heart disease prediction system using machine learning. Mater Today: Proc 2021.
  • [6] Ali L, Rahman A, Khan A, Zhou M, Javeed A, Khan JA. An automated diagnostic system for heart disease prediction based on v2 statistical model and optimally configured deep neural network. IEEE Access 2019;7:34938–45. https://doi.org/10.1109/ACCESS.2019.2904800.
  • [7] Li JP, Haq AU, Din SU, Khan J, Khan A, Saboor A. Heart disease identification method using machine learning classification in E-healthcare. IEEE Access 2020;8:107562–82. https://doi.org/10.1109/ACCESS.2021.3053759.
  • [8] Ghosh P, Azam S, Jonkman M, Karim A, Shamrat FMJM, Ignatious E, et al. Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access 2021;9:19304–26.
  • [9] Khedr AM, Aghbari ZA, Ali AA, Eljamil M. An efficient association rule mining from distributed medical databases for predicting heart diseases. IEEE Access 2021;9:15320–33. https://doi.org/10.1109/ACCESS.2021.3052799.
  • [10] Rahim A, Rasheed Y, Azam F, Anwar MW, Rahim MA, Muzaffar AW. An integrated machine learning framework for effective prediction of cardiovascular diseases. IEEE Access 2021;9:106575–88. https://doi.org/10.1109/ACCESS.2021.3098688.
  • [11] Hameed AZ, Ramasamy B, Shahzad MA, Ahmed AS, Bakhsh. Efficient hybrid algorithm based on genetic with weighted fuzzy rule for developing a decision support system in prediction of heart diseases. J Supercomp 2021;77:10117–37. https://doi.org/10.1007/s11227-021-03677-9.
  • [12] Shankar VV, Kumar V, Devagade U, Karanth V, Rohitaksha K. Heart disease prediction using CNN algorithm. SN Comput Sci 2020;1(3).
  • [13] Khan MM, Alanazi TM, Albraikan AA, Almalki FA, Arif M. IoT-based health monitoring system development and analysis. Security Commun Networks 2022;2022:1–11.
  • [14] Sheryl Oliver A, Kavithaa Ganesan SA, Yuvaraj TJ, Yacin Sikkandar M, Prakash NB. Accurate prediction of heart disease based on bio system using regressive learning based neural network classifier. J Ambient Intelligence Humanized Comp 2021. https://doi.org/10.1007/s12652-020-02786-2.
  • [15] L PR, Jinny SV, Mate YV. Early prediction model for coronary heart disease using genetic algorithms, hyper-parameter optimization and machine learning techniques. Health Technol 2021;11(1):63–73.
  • [16] Yazdani A, Varathan KD, Chiam YK, Malik AW, Wan Ahmad WA. A novel approach for heart disease prediction using strength scores with significant predictors. BMC Med Inform Decis Mak 2021;21(1).
  • [17] Nandy S, Adhikari M, Balasubramanian V, Menon VG. An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Comput Appl 2021. https://doi.org/10.1007/s00521-021-06124-1.
  • [18] Chadha R, Mayank S. Prediction of heart disease using data mining techniques. CSI Trans ICT 2016;4:193–8. https://doi.org/10.17485/ijst/2016/v9i39/102078.
  • [19] Al-Makhadmeh Z, Tolba A. Utilizing IoT wearable medical device for heart disease prediction using higher order Boltzmann model: a classification approach. Measurement 2019;147:106815.
  • [20] Sarmah SS. An efficient IoT-based patient monitoring and heart disease prediction system using deep learning modified neural network. IEEE Access 2020;8:135784–97. https://doi.org/10.1109/ACCESS.2020.3007561.
  • [21] Khan MA. An IoT framework for heart disease prediction based on MDCNN classifier. IEEE Access 2020;8:34717–27. https://doi.org/10.1109/ACCESS.2020.2974687.
  • [22] Ali F, El-Sappagh S, Islam SMR, Kwak D, Ali A, Imran M, et al. A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf Fusion 2020;63:208–22.
  • [23] Kumar PM, Devi Gandhi U, Devi Gandhi U. A novel three-tier Internet of Things architecture with machine learning algorithm for early detection of heart diseases. Comput Electr Eng 2018;65:222–35.
  • [24] Ganesan M, Sivakumar N. IoT based heart disease prediction and diagnosis model for healthcare using machine learning models. In: 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). p. 1–5. https://doi.org/10.1109/ICSCAN.2019.8878850.
  • [25] Mohan S, Thirumalai C, Srivastava G. Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 2019;7:81542–54. https://doi.org/10.1109/ACCESS.2019.2923707.
  • [26] Basheer S, Alluhaidan AS, Bivi MA. Real-time monitoring system for early prediction of heart disease using Internet of Things. Soft Comput 2021;25(18):12145–58.
  • [27] Manimurugan S, Almutairi S, Aborokbah MM, Narmatha C, Ganesan S, Chilamkurti N, et al. Two-stage classification model for the prediction of heart disease using IOMT and artificial intelligence. Sensors 2022;22(2):476.
  • [28] Raju KB, Dara S, Vidyarthi A, Gupta VM, Khan B, Bhardwaj A. Smart heart disease prediction system with IoT and fog computing sectors enabled by cascaded deep learning model. Comput Intelligence Neurosci 2022;2022:1–22.
  • [29] Fang Y, Shi J, Huang Y, Zeng T, Ye Y, Su L, et al. Electrocardiogram signal classification in the diagnosis of heart disease based on RBF neural network. Comput Math Methods Med 2022;2022:1–9.
  • [30] Umer M, Sadiq S, Karamti H, Karamti W, Majeed R, Nappi M. IoT based smart monitoring of patients’ with Acute Heart Failure. Sensors 2022;22(7):2431.
  • [31] Venkatesan M, Lakshmipathy P, Vijayan V. Cardiac disease diagnosis using feature extraction and machine learning based classification with Internet of Things(IoT). Concurrency Comput: Practice and Experience 2022;34(4):15. https://doi.org/10.1002/cpe.6622.
  • [32] Brites ISG, da Silva LM, Barbosa JLV, Rigo SJ, Correia SD, Leithardt VRQ. Machine learning and IoT applied to cardiovascular diseases identification through heart sounds: a literature review. Informatics 2021;8(4):73.
  • [33] Goyal A, kanyal HS, Kaushik S, Khan R. IoT based cloud network for smart health care using optimization algorithm. Inf Med Unlocked 2021;27:100792.
  • [34] Rosa JH, Barbosa JLV, Kich M, Brito L. A multi-temporal context-aware system for competences management. Int J Artif Intell Educ 2015;25:455–92. https://doi.org/10.1007/s40593-015-0047-y.
  • [35] da Rosa JH, Barbosa JLV, Ribeiro GD. An adaptive model for context prediction. Expert Syst Appl 2016;45:56–70.
  • [36] Filippetto AS, Lima R, Barbosa JLV. A risk prediction model for software project management based on similarity analysis of context histories. Inf Softw Technol 2021;131:106497.
  • [37] Dupont D, Barbosa JLV, Alves BM. CHSPAM: a multi-domain model for sequential pattern discovery and monitoring in contexts histories. Pattern Anal Appl 2020;23(2):725–34.
  • [38] Arthur Schneider Aranda J, Barbosa J, Bavaresco R, Varella Carvalho J. A computational model for adaptive recording of vital signs through context histories, J Ambient Intelligence Humanized Comp, 2021. https://doi.org/10.1007/s12652-021-03126-8.
  • [39] Bavaresco R, Barbosa J, Vianna H, Bu¨ ttenbender P, Dias L. Design and evaluation of a context-aware model based on psychophysiology. Comput Methods Programs Biomed 2020;189:105299.
  • [40] Aliyar Vellameeran F, Brindha T. A new variant of deep belief network assisted with optimal feature selection for heart disease diagnosis using IoT wearable medical devices. Comput Methods Biomech Biomed Eng 2022;25(4):387–411.
  • [41] Varghese A, Sylaja MM, Kurian J. Conception and realization of an IoT-enabled deep CNN decision support system for automated arrhythmia classification. J Intelligent Syst 2022;31(1):pp. https://doi.org/10.1515/jisys-2022-0015.
  • [42] Keikhosrokiani P., Nor Saralyna Azwa Binti Kamaruddin, IoTbased in-hospital-in-home heart disease remote monitoring system with machine learning features for decision making, Connected e-Health, 1021, pp 349–369, 2022. DOI: https://doi.org/10.1007/978-3-030-97929-4_16.
  • [43] Ahmed A., Monirujjaman Khan M., Singh P., Singh Batth R., Masud M. IoT-based real-time patients vital physiological parameters monitoring system using smart wearable sensors, Neural Comput Appl, 15, pp. 1–20, 2022. DOI: 10.1007/s00521-022-07090-y.
  • [44] Faruk N, Abdulkarim A, Emmanuel I, Folawiyo YY, Adewole KS, Mojeed HA, et al. ‘‘A comprehensive survey on low-cost ECG acquisition systems: advances on design specifications, challenges and future direction. Biocybern Biomed Eng 2021;41(2):474–502.
  • [45] Tabjula JL, Kanakambaran S, Kalyani S, Rajagopal P, Srinivasan B. Outlier analysis for defect detection using sparse sampling in guided wave structural health monitoring. Struct Control Health Monit 2021;28(3). https://doi.org/10.1002/stc.2690.
  • [46] Ramesh D, Deepa Jose R, Keerthana VK. Detection of pulmonary nodules using thresholding and fractal analysis. Comput Vision Bio Inspired Comp 2018:937–46. https://doi.org/10.1007/978-3-319-71767-8_80.
  • [47] Kavitha BC, Deepa Jose, Vallikannu R. IoT Based pollution monitoring system using raspberry-PI, Int J Pure Appl Mathem, 118 (24), 2018. DOI: https://acadpubl.eu/hub/2018-118-24/4/670.pdf.
  • [48] Reddy Bojja G., Liu J., Sai Ambati L. Dakota State University. Health Information systems capabilities and Hospital performance – An SEM analysis, AMCIS 2021 Proceedings, 31, pages 1761, 2021. DOI: https://aisel.aisnet.org/amcis2021/healthcare_it/sig_health/31.
  • [49] Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H. Harris hawks optimization: algorithm and applications. Future Gener Comp Syst 2019;97:849–72.
  • [50] Khuat TT, Gabrys B. An in-depth comparison of methods handling mixed-attribute data for general fuzzy min–max neural network. Neurocomputing 2021;464:175–202.
  • [51] Abbasi MU, Rashad A, Basalamah A, Tariq M. Detection of epilepsy seizures in neo-natal EEG using LSTM architecture. IEEE Access 2019;7:179074–85.
  • [52] Khourdifi, Y. Bahaj, M. Heart disease prediction and classification using machine learning algorithms optimized by particle swarm optimization and ant colony optimization, Int J Intelligent Eng Syst, 12 (1), 2019. DOI: 10.22266/ijies2019.0228.24.
  • [53] el Bakrawy M, El Lamiaa M, Al-Azhar B. Grey wolf optimization and naive bayes classifier incorporation for heart disease diagnosis. Austral J Basic Appl Sci Velmurugan Thambusamy 2017;11(7):64–70.
  • [54] Thambusamy V., Umasankar L. Prediction of heart disease using name entity recognition based on back propagation and whale optimization algorithms, Int J Innov Technol Explor Eng (IJITEE), 8 (10), 2019. DOI: 10.35940/ijitee.J1081.08810S19.
  • [55] Gawande N., Barhatte A., Heart diseases classification using convolutional neural network, Conference: 2017 2nd International Conference on Communication and Electronics Systems (ICCES), October 2017. DOI: 10.1109/CESYS.2017.8321264.
  • [56] Faeq Hussein A, Gomez J, Venkataraman V. Mathematical modelling of IoT-based health monitoring system. Comput Math Methods Med 2022.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fc37d35-4a44-4a8c-bf4a-7ac4ec58015e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.