PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First attempt to model numerically seismically-induced soft-sediment deformation structures : a comparison with field examples

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
No numerical model has thus far addressed seismites, even though seismites are frequently used for the conditions which have to be fulfilled for the development of seismites have also been estimated only empirically. The present contribution is a first attempt to model numerically the soft-sediment deformation structures caused by the passage of S-waves through near-surface sedimentary layers. The simulations are based on the so-reconstruction of seismic events in the geological past. This is the more remarkable since the boundary called pressure tube model and the iSALE2D program. We modelled a seismic S-wave with six different vertical velocities, ranging from 1.6 to 2.6 m · s-1, passing through sediments with different densities and porosities in a sedimentary succession from the surface down to a depth of 10 m. The modelled soft-sediment deformation structures (load casts, flame structures, injection structures and sedimentary volcanoes) show similar geometries and sizes as those known from laboratory experiments and field studies. The geometry, size and type of these structures depend on the sediment properties and on the initial pressure used as a trigger mechanism, rather than on S-wave velocity. In contrast, the depth of the seismites appears to depend strongly on the S-wave velocity.
Rocznik
Strony
s. 216--225
Opis fizyczny
Bibliogr. 53 poz., fot., rys., wykr.
Twórcy
  • Adam Mickiewicz University, Geological Institute, B. Krygowskiego 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Geological Institute, B. Krygowskiego 12, 61-680 Poznań, Poland
autor
  • Shandong University of Science and Technology, College of Earth Science and Engineering, Qingdao, China
Bibliografia
  • 1. Alfaro, P., Moretti, M., Soria, J.M., 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, central Betic Cordillera). Eclogae Geologicae Helvetiae, 90: 531-540.
  • 2. Allen, J.R.L., 1982. Sedimentary structures: their character and physical basis. Developments in Sedimentology, 30B.
  • 3. Amsden, A., Ruppel, H., Hirt, C., 1980. SALE: A simplified ALE computer program for fluid flow at all speeds. Los Almos National Laboratories Report, LA-8095.
  • 4. Andrus, R.D., Stokoe K.H., 1997. Liquefaction resistance based on shear wave velocity. National Center for Earthquake Engineering Research (Salt Lake City) Report, 0022.
  • 5. Atkinson, G.M., Eeri, M., Liam, Finn, W.D., Charlwood, R.G., 1984. Simple computation of liquefaction probability for seismic hazard applications. Earthquake Spectra, 1: 107-123.
  • 6. Belzyt, S., Pisarska-Jamroży, M., Bitinas, A., Woronko, B., Phillips, E.R., Piotrowski, J.A., Jusiené, A., 2021. Repetitive soft-sediment deformation by seismicity-induced liquefaction in north-western Lithuania. Sedimentology, 68: 3033-3056.
  • 7. Brandes, Ch., Steffen, H., Sandersen, P.B.E., Wu, P., Winsemann, J., 2018. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: implications for neotectonics and lateglacial fault-bound basin formation. Quaternary Science Reviews, 189: 149-168.
  • 8. Boulanger, R., Ziotopoulou, K., 2017. PM4sand version 3.1: a sand plasticity model for earthquake engineering applications. Report UC Davis Center for Geotechnical Modeling Report, UCD/CGM-17/01.
  • 9. Collins, G.S., Melosh, H.J., Ivanov, B.A., 2004. Modeling damage and deformation in impact simulations. Meteoritics & Planetary Science, 39: 217-231.
  • 10. Davison, T.M., Collins, G.S., Elbeshausen, D., Wünnemann, K., Kearley, A., 2011. Numerical modeling of oblique hypervelocity impacts on strong ductile targets. Meteoritics & Planetary Science, 46: 1510-1524.
  • 11. Doughty, M., Eyles, N., Eyles, C.H., Wallace, K., Boyce, J.I., 2014. Lake sediments as natural seismographs: earthquake-related deformations (seismites) in central Canadian lakes. Sedimentary Geology, 313: 45-67.
  • 12. Galli, P., 2000. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, 324: 169-187.
  • 13. Hilbert-Wolf, H.L., Simpson, E.L., Simpson, W.S., Tindall, S.E., Wizevich, M.C., 2009. Insights into syndepositional fault movement in a foreland basin; trends in seismites of Upper Cretaceous Wahweap Formation, Kaiparowits Basin, Utah, U.S.A. Basin Research, 21: 856-871.
  • 14. Hoffman, G., Reicherter, K., 2012. Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101: 351-363.
  • 15. Jeffeeris, M., Been, K., 2015. Soil Liquefaction - a Critical State Approach. CRC Press.
  • 16. Li, C., Liu, J., Sun, Y., 2020. Optimal third-order sympletic integration modeling of seismic acoustic wave propagation. Bulletin of the Seismological Society of America, 110: 754-762.
  • 17. Marco, S., Agnon, A., 1995. High-resolution stratigraphy reveals repeated earthquake faulting in the Masada Fault Zone, Dead Sea Transform. Tectonophysics, 408: 101-112.
  • 18. Meada, T., Takemura, S., Furumura, T., 2017. OpenSWPC: an open source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogenous viscoelastic media. Earth, Planets and Space, 69: 1-20.
  • 19. Miljković, K., Collins, G.S., Patel, M.R., Chapman, D., Proud, W., 2012. High-velocity impacts in porous solar system materials. AIP Conference Proceedings, 1426: 871-874.
  • 20. Moretti, M., Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Santi Arcangelo Basin (Southern Italy): Seismic shock vs. overloading. Sedimentary Geology, 196: 31-45.
  • 21. Moretti, M., Ronchi, A., 2011. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia). Sedimentary Geology, 235: 200-209.
  • 22. Moretti, M., Alfaro, P., Caselles, O., Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics, 304: 369-383.
  • 23. Obermeier, S.F., 1996. Use of liquefaction-induced features for paleoseismic analysis - an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Engineering Geology, 44: 1-76.
  • 24. Obermeier, S.F., 2009. Using liquefaction-induced and other softsediment features for paleoseismic analysis. In: Paleoseismology (ed. J.P. McCalpin): 487-564. Elsevier, New York.
  • 25. Obermeier, S.F., Jacobson, R.B., Smoot, J.P., Weems, R.E., Gohn, G.S., Monroe, J.E., Powars, D.S., 1990. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid seismic zone. U.S.G.S. Professional Paper, 1504.
  • 26. Oliveira, C.M.M., Hodgson, D.M., Flint, S.S., 2011. Distribution of soft-sediment deformation structures in clinoform successions of the Permian Ecca Group, Karoo Basin, South Africa. Sedimentary Geology, 235: 314-330.
  • 27. Owen, G., 1996. Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples. Sedimentology, 43: 279-293.
  • 28. Owen, G., Moretti, M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235: 141-147.
  • 29. Peng, P., Wang, L., 2019. 3DMRT: a computer package for 3D model-based seismic wave propagation. Seismological Research Letters, 90: 2039-2045.
  • 30. Pierazzo, E., Artemieva, N., Asphaug, N., Baldwin, E., Cazamias, E.C., Coker, R., Collins, G.S., Crawford, D.A., Davison, T., Elbeshauen, D., Holsapple, K.A., Housen, K.R., Korycansky, D.G., Wünnemann, K., 2008. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets. Meteoritics & Planetary Science, 43: 1917-1938.
  • 31. Pisarska-Jamroży, M., Woźniak, P.P., 2019. Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland. Geomorphology, 326: 225-238.
  • 32. Pisarska-Jamroży, M., Belzyt, S., Börner, A., Hoffmann, G., Hüneke, H., Kenzler, M., Obst, K., Rother, H., Van Loon, A.J., 2018. Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745: 338-348.
  • 33. Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusiené, A., Woronko, B., 2019a. Seismic shocks, periglacial conditions and glacitectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32: 63-77.
  • 34. Pisarska-Jamroży, M., Van Loon, A.J., Mleczak, M., Roman, M., 2019b. Enigmatic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evi denced by seismites) caused by Saalian glacioisostatic crustal rebound. Geomorphology, 326: 239-251.
  • 35. Pisarska-Jamroży, M., Woronko, B., Bujak, Ł., Bitinas, A., Belzyt, S., Mleczak, M., 2019c. Large-scale deformation structures characterize glaciolacustrine kame sediments - a new kame-investigation approach. Abstract book INQUA Congress 2019 (Dublin) O-1128.
  • 36. Rahman, M., Lo, S., 2014. Undrained behavior of sand-fines mixtures and their state parameters. Journal of Geotechnical and Geoenvironmental Engineering, 140: 04014036.
  • 37. Rahman, M., Asce, M., Nguyen, H.B.K., Fourie, A.B., Kuhn, M.R., 2020. Critical state soil mechanics for cyclic liquefaction and postliquefaction behavior: DEM study. Journal of Geotechnical and Geoenvironmental Engineering, 147: 04020166.
  • 38. Rodríguez-Pascua, M.A., Calvo, J.P., De Vicente, G., Gomez Gras, D., 2000. Seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their use as indicators of earthquake magnitudes during the late Miocene. Sedimentary Geology, 135: 117-135.
  • 39. Rossetti, D.F., 1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, Sao Luis Basin, northern Brasil: evidence for palaeoseismicity. Sedimentology, 46: 1065-1081.
  • 40. Rossetti, D.F., Bezerra, F.H.R., Goes, A.N., Neves, B.B.B., 2011. Sediment deformation in Miocene and post-Miocene strata, Northeastern Brazil: Evidence for paleoseismicity in a passive margin. Sedimentary Geology, 235: 172-187.
  • 41. Seed, H.B., Idris, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations Division, 97: 1249-1273.
  • 42. Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology, 13: 15-159.
  • 43. Vaid, Y.P., Thomas, J., 1995. Liquefaction and postliquefaction behavior of sand. Journal of Geotechnical Engineering, 121: 1321-1337.
  • 44. Van Loon, A.J., 2010. Sedimentary volcanoes: overview and implications for the definition of a “volcano” on Earth. GSA Special Paper, 470: 31-41.
  • 45. Van Loon, A.J., Maulik, P., 2011. Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sedimentary Geology, 238: 145-155.
  • 46. Van Loon, A.J., Pisarska-Jamroży, M., 2014. Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacioisostatic rebound. Sedimentary Geology, 300: 1-10.
  • 47. Van Loon, A.J., Pisarska-Jamroży, M., Nartišs, M., Krievāns, M., Soms, J., 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography, 5: 363-380.
  • 48. Van Loon, A.J., Pisarska-Jamroży, M., Woronko, B., 2020. Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks. Geological Quarterly, 64 (3): 626-640.
  • 49. Vanneste, K., Meghraoui, M., Camelbeeck, T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics, 309: 57-79.
  • 50. Wheeler, R.L., 2002. Distinguishing seismic from nonseismic soft-sediment structures: criteria from seismic-hazard analysis. GSA Special Paper, 359: 1-11.
  • 51. Woźniak, P.P., Belzyt, S., Pisarska-Jamroży, M., Woronko, B., Lamsters, K., Nartišs, M., Bitinas, A. 2021. Liquefaction and re-liquefaction of sediments induced by uneven loading and glacigenic earthquakes: implications of results from the Latvian Baltic Sea coast. Sedimentary Geology, 421: 105944.
  • 52. Wünnemann, K., Colling, G.S., Melosh, H., 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous target. Icarus, 180: 514-527.
  • 53. Youd, T.L., Idriss, I.M., 2001. Liquefaction resistance of soil: summary report from the 1996 NCEER and 1998 NCEER/NFS workshop on evaluation of liquefaction resistance of soil. Journal of Geotechnical and Geoenvironmental Engineering, 127: 1275-1285.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fc0a8df-5c4e-4224-a71d-23f9011152cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.