Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mixed-mode thermal fracture of cracked AISI 304 austenitic stainless steel layers under severe thermal gradients of cryogenic and elevated temperatures is studied. Taking into account the variation of thermo-mechanical properties with temperature, the Jk-integral method, incorporating temperature-dependent material properties, is used to determine mixed-mode stress intensity factors from the results of finite element (FE) analysis. Effects of the convection heat transfer coefficient and the temperature of the contacting fluid on the mixed-mode fracture of the steel layers are investigated and it is shown that the mixed-mode stress intensity factors increase nonlinearly with these parameters. Results indicate that for accurate determination of crack tip fracture parameters when severe thermal gradients are present in the material, it is necessary to consider the variation of thermo-mechanical properties with temperature.
Czasopismo
Rocznik
Tom
Strony
309--326
Opis fizyczny
Bibliogr. 28 poz., rys. kolor.
Twórcy
autor
- Department of Mechanical Engineering College of Engineering University of Tehran North Karegar Ave. Jalal Ale Ahmad Blvd.,Tehran, Iran
autor
- Department of Mechanical Engineering College of Engineering University of Tehran North Karegar Ave. Jalal Ale Ahmad Blvd.,Tehran, Iran
Bibliografia
- 1. M.F. Mcguire, Stainless Steels for Design Engineers, ASM International, Ohio, 2008.
- 2. S.S.I.U.S, S.S.I.N.A, N.D.I., A.I.S.I., Design Guidelines for the Selection and Use of Stainless Steel, No. 9014, SSINA, Washington D.C., 1993.
- 3. A.S. Adamou, Cryogenic tanks recertification: case study for operational-life extension, Oil and Gas Facilities, 4, 88–100, 2015.
- 4. J.H. Kim, S.K. Kim, M.H. Kim, J.M. Lee, Numerical model to predict deformation of corrugated austenitic stainless steel sheet under cryogenic temperatures for design of liquefied natural gas insulation system, Materials & Design, 57, 26–39, 2014.
- 5. L.O. Voormeeren, A. Bilim, A.W. Vredeveldt, Impact resistance of cryogenic bunker fuel tanks, ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering, ASME, 2014.
- 6. Z. Guédé, B. Sudret, M. Lemaire, Life-time reliability based assessment of structures submitted to thermal fatigue, International Journal of Fatigue, 29, 1359–1373, 2007.
- 7. W. Dornowski, Influence of finite deformations on the growth mechanism of microvoids contained in structural metals, Archives of Mechanics, 51, 71–86, 1999.
- 8. V.M. Mirsalimov, N.M. Kalantarly, Crack nucleation in circular disk under mixed boundary conditions, Archives of Mechanics, 67, 115–136, 2015.
- 9. S.M. Nabavi, R. Ghajar, Analysis of thermal stress intensity factors for cracked cylinders using weight function method, International Journal of Engineering Science, 48, 1811–1823, 2010.
- 10. I. Eshraghi, N. Soltani, Thermal stress intensity factor expressions for functionally graded cylinders with internal circumferential cracks using the weight function method, Theoretical and Applied Fracture Mechanics, 80, 170–181, 2015.
- 11. I. Eshraghi, N. Soltani, M. Rajabi, Transient stress intensity factors of functionally graded hollow cylinders with internal circumferential cracks, Latin American Journal of Solids and Structures, an ABCM Journal, 13, 1738–1762, 2016.
- 12. S. Dag, Y. Bora, S. Duy Gu, Mixed-mode fracture analysis of orthotropic functionally graded materials under mechanical and thermal loads, International Journal of Solids and Structures, 44, 7816–7840, 2007.
- 13. Z. Zhou, A.Y.T. Leung, X. Xu, X. Luo, Mixed-mode thermal stress intensity factors from the finite element discretized symplectic method, International Journal of Solids and Structures, 51, 3798–3806, 2014.
- 14. X.F. Li, K.Y. Lee, Effect of heat conduction of penny-shaped crack interior on thermal stress intensity factors, International Journal of Heat and Mass Transfer, 91, 127–134, 2015.
- 15. K.S. Chan, U.S. Lindholm, S. Bodner, Constitutive modeling for isotropic materials, NASA Southwest Research Institute, Texas, 1988.
- 16. N. Noda, Thermal stresses in materials with temperature-dependent properties, Applied Mechanics Reviews, 44, 383–397, 1991.
- 17. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61, 5743–5755, 2013.
- 18. K. Chida, Surface temperature of a flat plate of finite thickness under conjugate laminar forced convection heat transfer condition, International Journal of Heat and Mass Transfer 43, 639–642, 2000.
- 19. N. Parveen, M.A. Alim, MHD free convection flow with temperature dependent thermal conductivity in presence of heat absorption along a vertical wavy surface, Procedia Engineering 56, 68–75, 2013.
- 20. S. Dag, Mixed-mode fracture analysis of functionally graded materials under thermal stresses: a new approach using Jk-integral, Journal of Thermal Stresses 30, 269–296, 2007.
- 21. J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of applied mechanics, 35, 379–386, 1968.
- 22. P.L. Kirillov, Thermo physical properties of materials for nuclear engineering, Institute for Heat and Mass Transfer in Nuclear Power Plants, Obninsk, 2006.
- 23. R.F. Barron, Cryogenic Systems, Clarendon, Oxford, 1985.
- 24. J.W. Ekin, Experimental Techniques for Low Temperature Measurements, Oxford Univ. Press, Oxford, 2006.
- 25. T.H.K. Barron, J.G. Collins, G.K. White, Thermal expansion of solids at low temperatures, Advances in Physics, 29, 609–730, 1980.
- 26. L.A. Gardner, K.T.NG. Insausti, M. Ashraf, Elevated temperature material properties of stainless steel alloys, Journal of Constructional Steel Research 66, 634–647, 2010.
- 27. J.N. Reddy, C.D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses, 21, 593–626, 1998.
- 28. K.C. Amit, J.H. Kim, Interaction integrals for thermal fracture of functionally graded materials, Engineering Fracture Mechanics, 75, 2542–2565, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fbd2218-d5df-4a9d-bd9f-a7afa56fb8a8