PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel DOPO-g-KH550 modification wood fibers and its effects on the properties of composite phenolic foams

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) graft γ-amino propyl triethoxy silane (KH550) was synthesized and introduced on the surface of wood fi ber. Finally DOPO-g-KH550 treated wood fi ber (DKTWF) was used to prepare DKTWF composite phenolic foams (DKTWFCPF). The structures of DOPO-g- KH550 was acknowledged by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1 H-NMR). The structures of DKTWF were confirmed by FT-IR. Compared with wood fi ber, the diffraction peaks’ position was basically unchanged, but the crystallinity was slightly increased and thermal stability were dramatically improved, T5%  and Tmax  increased by 21.9° and 36.1° respectively. But the char yield (800°) was slightly reduced. With the dosage of DKWF, there were different degrees of improvement including the mechanical properties, flame retardancy and microstructure of DKTWFCPF. Comprehensive analysis, the interfacial compatibility was signifi cantly improved between DKTWF and phenolic resin, and the suitable content of DKTWF was 4%.
Rocznik
Strony
47--53
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
autor
  • Nanjing Forestry University, College of Materials Science and Engineering, Nanjing 210037;
autor
  • Nanjing Forestry University, College of Materials Science and Engineering, Nanjing 210037;
autor
  • Nanjing Forestry University, College of Materials Science and Engineering, Nanjing 210037;
autor
  • Institute of Chemical Industry of Forestry Products, CAF, Jiangsu Province, Nanjing 210042, China
autor
  • Chinese Academy of Forestry, Beijing 100091, China
Bibliografia
  • 1. Lei, S., Guo, Q., Zhang, D., Shi, J., Liu, L. & Wei, X.. (2010). Preparation and properties of the phenolic foams with controllable nanometer pore structure. J. Appl. Poly. Sci. 117(6):3545-3550. DOI:10.1002/app.32280.
  • 2. Yang, H., Wang, X., Yuan, H., Song, L., Hu, Y., Yuen, R.K.K. (2012). Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers. J. Poly. Res. 19(3):9831. DOI:10.1007/s10965-012-9831-7
  • 3. Ma, Y., Wang, C. & Chum, F. (2017). Effects of fiber surface treatments on the properties of wood fiber-phenolic foam composites. Bioresources. 12(3), 4722–4736. DOI: 10.15376/biores. 12.3.4722-4736.
  • 4. Rangari, V.K., Hassan, T.A., Zhou, Y., Mahfuz, H., Jeelani, S. & Prorok, B.C. (2010). Cloisite clay-infused phenolic foam nanocomposites. J. Appl. Polym. Sci. 103(1), 308–314. DOI:10.1002/app.25287.
  • 5. Bledzki, A.K. & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24(2), 221–274. DOI: 10.1016/S0079-6700(98)00018-5.
  • 6. Canché-Escamilla, G., Cauich-Cupul, J.I., Mendizábal, E., Puig, J.E., Vázquez-Torres, H. & Herrera-Franco, P.J. (1999). Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites. Composites Part A Applied Science & Manufacturing. 30(3), 349–359. DOI: 10.1016/S1359-835X(98)00116-X
  • 7. Mitra, B.C., Basak, R.K. & Sarkar, M. (1998). Studies on jute-reinforced composites, its limitations, and some solutions through chemical modifi cations of fibers. J. Appl. Polym. Sci. 67(6), 1093–1100. DOI:10.1002/(SICI)1097-4628(19980207)67:6< 1093:AID-APP17>3.0.CO;2-1.
  • 8. Rana, A.K., Mandal, A., Mitra, B.C., Jacobson, R., Rowell, R. & Banerjee, A.N.. (1998). Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer. J. Appl. Polym. Sci. 69(2), 329–338. DOI: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14> 3.0. CO;2-R.
  • 9. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H. & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A. 41(7), 806–819. DOI: 10.1016/j. compositesa.2010.03.005.
  • 10. Maldas, D. & Kokta, B.V. (1993). Performance of Hybrid Reinforcements in PVC Composites: Part Iural fiber/polymer composites: A review. Compositesforcements. J. Testing & Evaluation. 21(1), 5. DOI: 10.1177/073168449201101002.
  • 11. Mohanty, A.K., Misra, M. & Drzal, L.T. (2002). Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J. Polym. & the Environ. 10(1–2), 19–26. DOI: 10.1023/A:1021013921916.
  • 12. Sanadi, A.R., Caulfield, D.F., Rowell, R.M. (1994). Reinforcing polypropylene with natural fibers. Societyofplasticsengineers Inc. :v50(:n4):27-28. DOI: 10.1515/pjct-2017-0077.
  • 13. Rider, A. & Arnott, D. (2000). Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. International journal of adhesion and adhesives. 20(3), 209–220. DOI: 10.1016/S0143-7496(99)00046-9.
  • 14. Mittal, K.L. (2007). Silanes and other coupling agents. CRC Press.
  • 15. Ma, Y., Wang, C. & Chu, F. (2017). The structure and properties of eucalyptus fiber/phenolic foam composites under N-ng. International journal of adhesion and adhesives. Polymers & the Environment. arch. mount of DKWF19(4), 116–121. DOI: 10.1515/pjct-2017-0077.
  • 16. Zhang, W., Li, X. & Yang, R. (2011). Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polymer Degradation & Stability. 96(12), 2167–2173. DOI: 10.1016/j.polymdegradstab.2011.09.016.
  • 17. Zang, L., Wagner, S., Ciesielski, M. & Mb, P. 2011.09.016.2011.09.016” f DOPO-PO-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polymers for Advanced Technologies. 22(7), 1182ng flame retardan/pat.1990.
  • 18. Perret, B., Schartela, M., Ciesielski, J. & Diederichs, M. Dvanced Technologies. epoxy resins. Polymer Degradation & Stability. γ-aminopropyl trimethoxy silane pretreatments. Polish Journal of Chemical Technology. was 6%.47(5), 1081–1089. DOI: 10.1016/j.eurpolymj. 2011.02.008
  • 19. Dumitrascu, A. (2012). Flame retardant polymeric materials achieved by incorporation of styrene monomers containing both nitrogen and phosphorus. Polymer Degradation & Stability. 97(12), 2611–2618. DOI: 10.1016/j.polymdegradstab. 2012.07.012
  • 20. Sun, D. & Yao, Y. (2011). Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins. Polymer Degradation & Stability. 96(10), 1720–1724. DOI: 10.1016/j.polymdegradstab.2011.08.004.
  • 21. Wang, P. & Cai, Z.. (2017). Highly efficient flame-retardant epoxy resin with a novel DOPO-based triazole compound: Thermal stability, flame retardancy and mechanism. Polymer Degradation & Stability. 137. DOI: 10.1016/j.polymdegradstab. 2017.01.014.
  • 22. Carja, I.D., D. Serbezeanu, T. Vladbubulac, C. Hamciuc, A. Coroaba, G. & Lisa, C.G. L DOPO-based triazole compound: Thermal stability, flame retardancy and mechanism. PolymerDegradation & Stability. ical Technlame retardant epoxy resins. J. Mater. Chem. A. 2(38), 16230–16241.DOI: 10.1039/c4ta03197k.
  • 23. Yuxiang, O. & Jianjun, L. (2006). Flame Retardants: Property, Preparation and Application. Beijing, Chemical Industry Press.
  • 24. Shan, G., Jia, L., Zhao, T., Jin, C., Liu, R. & Xiao, Y.. (2017). A novel DDPSi-FR flame retardant treatment and its effects on the properties of wool fabrics. Fibers & Polymers. 18(11), 2196–2203. DOI: 10.1007/s12221-017-7244-2
  • 25. Tang, C., Yan, H., Li, M. & Lv, Q. (2017). A novel phosphorus-containing polysiloxane for fabricating high performance electronic material with excellent dielectric and thermal properties. J. Mater. Sci. Mater. Electron. 1–10. DOI: 10.1007/s10854-017-7904-4
  • 26. Fang, Y., Zhou, X., Xing, Z. & Wu, Y. (2017). An effective flame retardant for poly(ethylene terephthalate) synthesized by phosphaphenanthrene and cyclotriphosphazene. J. Appl. Polym. Sci. 134(35). DOI: 10.1002/app.45246.
  • 27. Wan, X., Zhan, Y., Long, Z., Zeng, G., He, Y. (2017). Core@double-shell structured magnetic halloysite nanotube nano-hybrid as efficient recyclable adsorbent for methylene blue removal. Chem. Eng. J. 330(15), 491–504.DOI: 10.1016/j.cej.2017.07.178.
  • 28. Wan, X., Y. Zhan, Z. Long, G. Zeng, Y. Ren, Y. He. (2017). High-performance magnetic poly (arylene ether nitrile) nanocomposites: co-modification of Fe3O4 via mussel inspired poly (dopamine) and amino functionalized silane KH550. Applied Surface Science. 425(15), 905–914. DOI: 10.1016/j.apsusc.2017.07.136.
  • 29. Su, J., J. Zhang. (2017). Effect of treated mica on rheological, cure, mechanical, and dielectric properties of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3)/ mica. J. Appl. Polym. Sci. 134(19). DOI: 10.1002/app.44833.
  • 30. Ni, P., Y. Fang, L. Qian, Y. Qiu. (2017). Flame-retardant mica. J. Appl. Polym. Sci. 134(19). DOI: 10.1002/app.44833 .J. Appl. Polym. Sci. DOI: 10.1002/app.45815.
  • 31. Chen, T., Chen, X., Wang, M., Hou, P., Jie, C., Li, J., Xu, Y., Zeng, B. & Dai, L. (2017). A novel halogen-free co-curing agent with linear multi-aromatic rigid structure as flame-retardant modifi er in epoxy resin. Polymers for Advanced Technologies. DOI: 10.1002/pat.4170.
  • 32. Cui, Y., Lee, S., Noruziaan, B., Cheung, M. & Tao, J. (2008). Fabrication and interfacial modification of wood/recycled plastic composite materials. Composites Part A Applied Science & Manufacturing. 39(4), 655–661. DOI: 10.1016/j. compositesa.2007.10.017.
  • 33. Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R. & Herrera-Franco, P.J. (1999). Chemical modification of henequén fibers with an organosilane coupling agent. Composites Part B Engineering. 30(3), 321–331. DOI: 10.1016/S1359-8368(98)00055-9.
  • 34. Wang, L., Han, G. & Zhang, Y. (2007). Comparative study of composition, structure and properties of Apocynum venetum fibers under different pretreatments. Carbohydrate Polymers. 69(2), 391–397. DOI: 10.1016/j.carbpol.2006.12.028.
  • 35. Lu, B., L. Zhang, J. Zeng, e. et al. (2005). Natural Fiber Composites Material Chemical Industry Press
  • 36. Huo, S., Wang, J., Yang, S., Chen, X., Zhang, B., Wu, Q. & Zhang, B. (2017). Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur. Polym. Adv. Technol. 29(1), 497–506. DOI: 10.1002/pat.4145.
  • 37. Qiu, Y., Wachtendorf, V., Klack, P., Qian, L., Liu, Z. & Schartel, B. (2017). Improved flame retardancy by synergy between cyclotetrasiloxane and phosphaphenanthrene/triazine compounds in epoxy thermoset. Polymer International. 66(12), 1883–1890. DOI: 10.1002/pi.5466. 3
  • 38. Jia, P., Zhang, M., Hu, L., Liu, C., Feng, G., Yang, X., Bo, C. & Zhou, Y. (2015). Development of vegetable oil based plasticizer for preparing flame retardant poly (vinyl chloride) materials. Rsc Advances. 5(93), 76392–76400. DOI: 10.1039/c5ra10509a.
  • 39. Jia, P., Zhang, M., Hu, L., Zhou, J., Feng, G. & Zhou, Y. (2015). Thermal degradation behavior and flame retardant mechanism of poly(vinyl chloride) plasticized with a soybean-oil-based plasticizer containing phosphaphenanthrene groups. Polymer Degradation & Stability. 121, 292–302. DIO: 10.1016/j.polymdegradstab.2015.09.020.
  • 40. Jia, P., Zhang, M., Liu, C., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer. Rsc Advances. 5(51), 1169–41178. DOI: 10.1039/c5ra05784a.
  • 41. Li, Y.Y., Wang, B. & Ma, M.G. (2017). The enhancement performances of cotton stalk fiber/PVC composites by sequential two steps modification. J. Appl. Polym. Sci. 135(14):46090. DOI: 10.1002/app.46090
  • 42. Tengsuthiwat, J., Asawapirom, U., Siengchin, S. & Karger & Kocsis, J. oacute, zsef. (2017). Mechanical, thermal, and water absorption properties of melamine–formaldehyde-treated sisal fiber containing polylactic acid composites. J. Appl. Polym. Sci. 135(2), 45681. DOI: 10.1002/app.45681.
  • 43. Ye, X., Wang, H., Wu, Z., Zhou, H. & Tian, X. (2018). Synthesis and functional features of wood fiber-polypropylene materials: Based on wood fibers with assembling nano-coating via adopting simple in situ-hydrothermal mechanism. Polym. Composites. 39(1), 5–13. DOI: 10.1002/pc.23894.
  • 44. Wang, C. & Xu, G. (2010). Research on Hard-segment Flame-retardant Modification of Waterborne Polyurethane. China Coatings. DOI: 10.13531/j.cnki.china.coatings.2010.08.010.
  • 45. Dong, Q., Liu, M., Ding, Y., Wang, F., Gao, C., Liu, P., Wen, B., Zhang, S. & Yang, M. (2013). Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polypropylene composites. Polym. Adv. Technol. 24(8), 732–739. DOI: 10.1002/ pat.3137.
  • 46. Oktay, B., Emrah, Y., Ding, F., Wang, C., Gao, P., Liu, B., Wen, S., Zhang, M., Yang. (2013). Synergistic effect of DOPO immobilized silica nanoparticles in the intumescent flame retarded polyprop131(22), 132–142. DOI: 10.1016/j.polymer.2017.10.043.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fb9f0f0-112f-416e-b2e7-31b036be4600
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.