PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Redox conditions in the Late Cretaceous Chalk Sea: the possible use of cerium anomalies as palaeoredox indicators in the Cenomanian and Turonian Chalk of England

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cerium anomalies preserved in the Chalk have been investigated as possible palaeoredox indicators of the Late Cretaceous Sea and its sediment. This has been based upon over a hundred new rare earth element analyses of selected samples and grain size fractions from the Chalk. Particular attention has been given to the methodology of differentiating between the cerium anomalies preserved in the bioclastic calcite and those in carbonate-fluorapatite preserved in the acetic acid insoluble residues of chalks. Variations in the cerium anomaly of different particle size fractions of uncemented chalks suggest that fractionation of rare earth elements between the Chalk’s seawater and the various organisms that contributed skeletal material to the bioclastic calcite of the Chalk may have occurred. Post-depositional processes of calcite cementation and late diagenetic sulphidisation have had no apparent effect on the cerium anomaly of the acetic acid insoluble residues. The cerium anomalies associated with the acetic acid insoluble residues from (1) an alternating sequence of chalks and marls from Ballard Cliff (Dorset, UK) typical of Milankovitch cyclicity show a marked diagenetic pattern, whereas those from (2) non-volcanic and volcanic marls display a pattern that is best explained by the variations in the availability of phosphorus and the timing of argillisation of volcanic glass during diagenesis. The general conclusion is drawn that the cerium anomalies preserved in the Chalk can provide an insight into the changing palaeoredox conditions in the Late Cretaceous Sea as well as in the pore fluids of its sediments.
Rocznik
Strony
345--366
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, U.K.
autor
  • Department of Earth and Environment Sciences, University of Greenwich, Pembroke, Chatham Maritime, Kent ME4 4TB, U.K.
  • Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.
Bibliografia
  • 1. Blumenberg, M. and Wiese, F. 2012. Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE 2 (Wunstorf, Germany). Biogeosciences, 9, 4139–4153.
  • 2. Bower, C.R. and Farmery, J.T. 1910. The zones of the Lower Chalk of Lincolnshire. Proceedings of the Geologists’ Association, 11, 333–359.
  • 3. de Baar, H.J.W., German, C.R., Elderfield, H. and van Gaas, P. 1988. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochemica Acta, 52, 1203–1219.
  • 4. Gale, A.S. 1990 A Milankovitch scale for Cenomanian time. Terra Nova, 1, 420–425.
  • 5. Gale, A.S., Young, J.R., Shackleton, N.J., Crowhurst, S.J. and Wray, D.S. 1999. Orbital tuning of Cenomanian marly chalk successions: towards a Milankovitch timescale for the Late Cretaceous. Philosophical Transactions of the Royal Society, London. Series A, 357, 1815–1829.
  • 6. German, C.R. and Elderfield, H. 1989. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochimica Cosmochimica Acta, 53, 2561–2571.
  • 7. German, C.R. and Elderfield, H. 1990. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography, 5, 823–833.
  • 8. Hönisch, B., Allen, K.A., Lea, D.W., Spero, H.J., Eggins, S.M., Arbuszewski, J., de Menocal, P., Rosenthal, Y., Russell, A.D. and Elderfield, H. 2013. The influence of salinity on Mg/Ca in planktic foraminifera – Evidence from cultures, core-top sediments and complimentary δ18O. Geochemica et Cosmochemica Acta, 121, 196–213.
  • 9. Henderson, P. and Williams, C.T. 1981. Application of intrinsic Ge detectors to the instrumental neutron activation analysis for rare earth elements in rocks and minerals. Journal of Radioanalytical Chemistry, 67, 445–452.
  • 10. Hu, X.F., Jeans, C.V. and Dickson, J.A.D. 2012. Geochemical and stable isotope patterns of calcite cementation in the Upper Cretaceous Chalk, UK: Direct evidence from calcite-filled vugs in brachiopods. Acta Geologica Polonica, 62, 143−172.
  • 11. Hu, X.F., Long, D. and Jeans, C.V. 2014. A novel approach to the study of the development of the Chalk’s smectite assemblage. Clay Minerals, 49, 277–297.
  • 12. Jarvis, I. 1980. Geochemistry of phosphatic chalks and hardgrounds from the Santonian to early Campanian (Cretaceous) of northern France. Journal of the Geological Society, London, 137, 705–721.
  • 13. Jarvis, I. 1984. Rare earth element geochemistry of late Cretaceous Chalks and phosphorites from northern France. Special Publication of the. Geological Survey of India, 17, 179–190.
  • 14. Jarvis, I. 2006. The Santonian–Campanian phosphatic chalks of England and France. Proceedings of the Geologists’ Association, 117, 219–237
  • 15. Jeans, C.V. 1967. The Cenomanian Rocks of England. Unpublished PhD thesis, University of Cambridge, 156 pp.
  • 16. Jeans, C.V. 1968. The origin of the montmorillonite of the European Chalk with special reference to the Lower Chalk of England. Clay Minerals, 7, 311–329.
  • 17. Jeans, C.V. 1980. Early submarine lithification in the Red Chalk and Lower Chalk of eastern England; a bacterial control model and its implications. Proceedings of the Yorkshire Geological Society, 43, 81–157.
  • 18. Jeans, C.V., Hu, X.F. and Mortimore, R.N. 2013. Calcite cements and the stratigraphical significance of the marine δ13C carbonate reference curve for the Upper Cretaceous Chalk of England. Acta Geologica Polonica, 62, 173–196.
  • 19. Jeans, C.V., Long, D., Hu, X.F. and Mortimore, R.N. 2014. Regional hardening of Upper Cretaceous Chalk in eastern England, UK: trace element and stable isotope patterns in the Upper Cenomanian and Turonian Chalk and their significance. Acta Geologica Polonica, 64, 419–455.
  • 20. Jeans, C.V., Tosca, N.J., Boreham, S. and Hu, X.F. 2014. Clay mineral-grain size-calcite cement relationships in Upper Cretaceous Chalk, UK: a preliminary investigation. Clay Minerals, 49, 299–325.
  • 21. Mortyn, P.G., Elderfield, H. Anand, P. and Greaves, M.J. 2005. An evaluation of controls on planktonic foraminiferal Sr/Ca: comparison of water column and core top data from a North Atlantic transect. G3, Geochemistry. Geophysics Geosystems, 6. DOI 10.1029/2005GC001047
  • 22. Perrin, R.M.S. 1964. The analysis of chalk and other limestones for geochemical studies, pp. 207–221. In: Analysis of Calcareous Materials. Monograph of the Society of Chemical Industries (London), 18, 481 pp.
  • 23. Ricken, W. 1986. Diagenetic bedding: a model for limestonemarl alternations. Berlin, Springer, 210 pp.
  • 24. Sadekov, A.Y., Bush, F., Kerr, J. Ganeshram, R. and Elderfield, H. 2014. Mg/Ca composition of benthic foraminifera Miliolacea as a new tool of paleoceanography. Paleoceanography , 29, 2014PA002654. ISSN 1944-9186 DOI 10.1002/2014PA002654.
  • 25. Siesser, W.G. 1977. Chemical composition of calcareous nannofossils. South African Journal of Science, 73, 283–285.
  • 26. Starmer, I.C. 1995. Deformation of the Upper Cretaceous Chalk at Selwicks Bay, Flamborough Head, Yorkshire: its significance in the structural evolution of north-east England and the North Sea Basin. Proceedings of the Yorkshire Geological Society, 50, 213–228.
  • 27. Starmer, I.C. 2008. The concentration of folding and faulting in the Chalk at Staple Newk (Scale Nab) near Flamborough, East Yorkshire. Proceedings of the Yorkshire Geological Society, 57, 95–106.
  • 28. Starmer, I.C. 2013. Folding and faulting in the Chalk at Dykes End, Bridlington Bay, East Yorkshire, resulting from reactivations of the Flamborough Head Fault Zone. Proceedings of the Yorkshire Geological Society, 59, 195–201.
  • 29. Voigt, S. Wilmsen, M., Mortimore, R.N. and Voigt, T. 2003. Cenomanian palaeotemperatures derived from the oxygen isotopic composition of brachiopods and belemnites: evaluation of Cretaceous palaeotemperature proxies. International Journal of Earth Sciences (Geologische Rundschau), 92, 285–299.
  • 30. Voigt, S., Erbacher, J., Mutterlose, J., Weiss, W., Westerhold, T., Wiese, F., Wilmsen, M. and Wonik, T. 2008. The Cenomanian – Turonian of the Wunstorf Section (North Germany): global stratigraphic reference section and new orbital time scale of Oceanic Anoxic Event 2. Newsletters on Stratigraphy, 43, 65–89.
  • 31. Weir, A.H. and Catt, J.A. 1965. The mineralogy of some Upper Chalk samples from the Arundel area, Sussex. Clay Minerals, 6, 97–110.
  • 32. Westphal. H. and Munnecke, A. 2003. Limestone-marl alternations: a warm water phenomena. Geology, 31, 263–266.
  • 33. Westphal, H, Hilgen, F. and Munnecke, A. 2010. An assessment of the suitability of individual rhythmic carbonate successions for astrochronological application. Earth-Science Reviews, 99, 19–30.
  • 34. Wood, C.J. and Smith, E.G. 1978. Lithostratigraphical classification of the Chalk in North Yorkshire, Humberside and Lincolnshire. Proceedings of the Yorkshire Geological Society, 42, 263–287.
  • 35. Wray, D.S. 1999. Identification and long-range correlation of bentonites in Turonian – Coniacian (Upper Cretaceous) chalks of northwest Europe. Geological Magazine, 136, 361–371.
  • 36. Wray, D.S. and Jeans, C.V. 2014. Chemostratigraphy and provenance of clays and other noncarbonated minerals in chalks of Campanian age (Upper Cretaceous) from Sussex, southern England. Clay Minerals, 49, 327–340.
  • 37. Wray, D.S. and Wood, C.J. 1995. Geochemical identification and correlation of tuff layers in Lower Saxony, Germany. Berliner Geowissenschaftliche Abhandlungen, E16.1, 215–226.
  • 38. Wray, D.S. and Wood, C.J. 1998. Distinction between detrital and volcanogenic clay-rich beds in Turonian–Coniacian chalks of eastern England. Proceedings of the Yorkshire Geological Society, 52, 95–105.
  • 39. Wray, D.S. and Wood, C.J. 2002. Identification of a new bentonite in sediments of Mid-Turonian age from Lower Saxony, Germany and its correlation within NW Europe. Austrian Academy of Science Series: Schriftenreihe der Erdwissenschaftlichen Kommissionen, 15, 47–58.
  • 40. Wray, D.S., Kaplan, U. and Wood, C.J. 1995. Tuff-Vorkommen und ihre Bio- und Eventstratigraphie im Turon des Teutoburger Waldes, der Egge und des Haarstrangs. Geologie und Paläontologie in Westfalen, 37, 1–53.
  • 41. Wray, D.S., Wood, C.J., Ernst, G. and Kaplan, U. 1996. Geochemical subdivision and correlation of clay-rich beds in Turonian sediments of northern Germany. Terra Nova, 8, 603–610.
  • 42. Yu, J., Elderfield, H. and Hönisch, B. 2007. B/Ca in planktonic foraminifera as a proxy for surface seawater pH. Paleoceanography, 22, PA2202. DOI 10.1029/2006PA001347
  • 43. Yu, J., Elderfield, H., Jin, Z. and Booth, L. 2008. A strong temperature effect on U/Ca in planktonic foraminiferal carbonates. Geochemica et Cosmochemica Acta , 72, 4988-5000. ISSN 0016-7037 DOI 10.1016/j.gca.2008.07.011
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fb9d29c-eef0-43eb-a449-b0d02a41b014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.