Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
During several recent years an increasing interest concerning behavior of various gaseous or liquid hydrocarbons mixtures with neat gaseous hydrogen is observed. The phase equilibria as well as flow properties have been studied and some practical implementations indicated. The main practical idea consists in a possibility to use such mixtures as a replacement for pure hydrocarbons actually used as the energy source. Application of hydrogen enriched mixtures seem to be a temporary solution for gradual decarbonization of energy resources. The advantage of such approach may consist in much smaller requirements for investment in various aspect of infrastructure needed for handling the fuels. The present work is devoted to computer simulation of carbon dioxide emissions for several scenarios based on different compositions of hydrogen mixtures with hydrocarbons. The simulations include estimation of calorific value of the mixture and composition of exhaust gases emitted after its combustion. The simulation, based on s.c. logistic function, evaluates several variants of time dependence of new fuels implementation, and consequently time dependence of changes in composition of emissions to atmosphere. The simulation can be used for choosing the ways of practical implementation management.
Wydawca
Rocznik
Tom
Strony
78--85
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
autor
- Department of Production, Faculty of Engineering Management Management, Bialystok University of Technology, ul. Wiejska Street 45A, 15-351 Białystok, Poland
autor
- Department of Production, Faculty of Engineering Management Management, Bialystok University of Technology, ul. Wiejska Street 45A, 15-351 Białystok, Poland
autor
- Institute of Mechanical Engineering, Department of Production Engineering, Warsaw University of Life Sciences, ul. Nowoursynowska 164, 02-787 Warsaw, Poland
autor
- Department of Production Computerisation and Robotisation, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Franzke C.L.E. Towards the development of economic damage functions for weather and climate extremes. Ecological Economics. 2021; 189: 107172. https://doi.org/10.1016/j.ecolecon.2021.107172.
- 2. Tabandeh A., Hossain M.J., Li L. Integrated multistage and multi-zone distribution network expansion planning with renewable energy sources and hydrogen refuelling stations for fuel cell vehicles. Applied Energy. 2022; 319: 119242. https://doi.org/10.1016/j.apenergy.2022.119242.
- 3. Tan J.D., Chang C.C.W., Bhuiyan M.A.S., Minhad K.N., Ali K. Advancements of wind energy conversion systems for low-wind urban environments: A review. Energy Reports. 2022; 8: 3406–3414. https://doi.org/10.1016/j.egyr.2022.02.153.
- 4. Wasiak A. Modeling Energetic Efficiency of Biofuels Production. Green Energy and Technology. Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-319-98431-5.
- 5. Orynycz O. Influence of tillage technology on energy efficiency of rapeseed plantation. Procedia Engineering. 2017; 182: 532–539. DOI: 10.1016/j.proeng.2017.03.148.
- 6. Quarton C.J., Samsatli S. Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?. Renewable and Sustainable Energy Reviews. 2018; 98: 302–316. https://doi.org/10.1016/j.rser.2018.09.007.
- 7. Nadaleti W.C., Przybyla G., Filho P.B., Melegari de Souza S.N., Quadro M., Andreazza R. Methane–hydrogen fuel blends for SI engines in Brazilian public transport: Potential supply and environmental issues. International Journal of Hydrogen Energy. 2017; 42(17): 12615–12628. https://doi.org/10.1016/j.ijhydene.2017.03.124.
- 8. Nakahara T., Hirata M. The prediction of Henry’s constants for hydrogen-hydrocarbon systems. Journal Of Chemical Engineering of Japan. 1969; 2: 137–142. https://doi.org/10.1252/jcej.2.137.
- 9. Kim H.M., Schultz A.J., Kofke D.A. Second through fifth virial coefficients for model methane-methane mixtures. Fluid Phase Equilibria. 2013; 351: 69–73. https://doi.org/10.1016/j.fluid.2012.10.014.
- 10. Tang G., Jin P., Bao Y., Chai W.S., Zhou L. Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia. International Journal of Hydrogen Energy 2021; 46: 20765–20776. https://doi.org/10.1016/j.ijhydene.2021.03.154.
- 11. Kuriyama N., Sakai T., Miyamura H. Tanaka H, Ishikawa H, Uehara I. Hydrogen storage alloys for nickel/metal-hydride battery. Vacuum. 1996; 47(6–8): 889–892. https://doi.org/10.1016/0042207X(96)00088-7.
- 12. Yamin J.A., Sheet E.A.E., Rida K.S. Relative Change in SI Engine Performance Using Hydrogen and Alcohol as Fuel Supplements to Gasoline. Advances in Science and Technology Research Journal. 2021; 15(1): 144–155. DOI: 10.12913/22998624/130999.
- 13. Ghasemi M., Whitson C.H. PVT modeling of complex heavy oil mixtures. Journal of Petroleum Science and Engineering. 2021; 205: 108510. https://doi.org/10.1016/j.petrol.2021.108510.
- 14. Gambelli A.M., Castellani B., Nicolini A., Rossi F. Gas hydrate formation as a strategy for CH4/CO2 separation: Experimental study on gaseous mixtures produced via Sabatier reaction. Journal of Natural Gas Science and Engineering. 2019; 71: 102985. https://doi.org/10.1016/j.jngse.2019.102985.
- 15. Makaryan I.A., Sedov I.V., Salgansky E.A., Arutyunov A.V., Arutyunov V.S. A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities. Energies. 2022; 15: 2265. https://doi.org/10.3390/en15062265.
- 16. Elyanov A., Golub V., Volodin V. Premixed hydrogen-air flame front dynamics in channels with central and peripheral ignition. International Journal of Hydrogen Energy. 2022; 47(53): 22602–22615. https://doi.org/10.1016/j.ijhydene.2022.05.048.
- 17. Zareei J., Mahmood F.W., Abdullah S., Ali Y. A Review on Numerical and Experimental Results of Hydrogen Addition to Natural Gas in Internal Combustion Engines. International Journal of Renewable and Sustainable Energy. 2014; 3: 6–12. DOI: 10.11648/j.ijrse.20140301.12.
- 18. German J., Diaz A., Montoya J.P.G., Martinez L.A.C., Olsen D.B., Navarro A.S. Influence of engine operating conditions on combustion parameters in a spark ignited internal combustion engine fueled with blends of methane and hydrogen. Energy Conversion and Management. 2019; 181: 414–424. https://doi.org/10.1016/j.enconman.2018.12.026.
- 19. Rimkus A., Melaika M., Matijošius J., Mikaliūnas Š., Pukalskas S. investigation of combustion, performance and emission characteristics of spark ignition engine fuelled with buthanol – gasoline mixture and a hydrogen enriched air. Advances in Science and Technology Research Journal. 2016; 10(31): 102–108. DOI: 10.12913/22998624/64071.
- 20. Sarkan B., Skrucany T., Semanova S., Madlenak R., Kuranc A., Sejkorova M., Caban J. Vehicle coast-down method as a tool for calculating total resistance for the purposes of type-approval fuel consumption. Scientific Journal of Silesian University of Technology-Series Transport. 2018; 98: 161–172. DOI: 10.20858/sjsutst.2018.98.15.
- 21. Milojević S., Savić S., Marić D., Stopka O., Krstić B., Stoja B.; Correlation between Emission and Combustion Characteristics with the Compression Ratio and Fuel Injection Timing in Tribologically Optimized Diesel Engine. Tehnički vjesnik. 2022; 29(4), 1210–1219.
- 22. Gaykema E.W., Skryabin I., Prest J., Hansen B. Assessing the viability of the ACT natural gas distribution network for reuse as a hydrogen distribution network. International Journal of Hydrogen Energy. 2021; 46: 12280–12289. https://doi.org/10.1016/j.ijhydene.2020.11.051.
- 23. Stolecka K. Hazards of hydrogen transport in the existing natural gas pipeline network. Journal of Power Technologies. 2018; 98(4): 329–335.
- 24. Anifantis A.S., Colantoni A., Pascuzzi S., Santoro F. Photovoltaic and Hydrogen Plant Integrated with a Gas Heat Pump for Greenhouse Heating: A Mathematical Study. Sustainability. 2018; 10: 378. https://doi.org/10.3390/su10020378.
- 25. Janke L., Ruoss F., Hahn A., Weinrich S., Nordberg A. Modelling synthetic methane production for decarbonising public transport buses: A techno-economic assessment of an integrated power-to-gas concept for urban biogas plants. Energy Conversion and Management. 2022; 259: 115574. https://doi.org/10.1016/j.enconman.2022.115574.
- 26. Drela K. Harnessing solar energy and green hydrogen – the energy transition. Procedia Computer Science. 2021; 192: 4942–4951. https://doi.org/10.1016/j.procs.2021.09.272.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fb93a05-e318-493e-a270-4bbe58db7f12