PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of ADC Resolution on Low-Frequency Electrical Time-Domain Impedance Spectroscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the effect of the resolution of an analogue-to-digital converter (ADC) on the accuracy of timedomain low-frequency electrical impedance spectroscopy is examined. For the first time, we demonstrated that different wideband stimuli signals used for impedance spectroscopy have different sensitivities to the resolution of ADC used in impedance spectroscopy systems. We also proposed Ramp and Half-Gaussian signals as new wideband stimulating signals for EIS. The effect of ADC resolution was studied for Sinc, Gaussian, Half-Gaussian, and Ramp excitation signals using both simulation and experiments. We found that Ramp and Half-Gaussian signals have the best performance, especially at low frequencies. Based on the results, a wideband electrical impedance spectroscopy circuit was implemented with a high accuracy at frequencies bellow 10 Hz.
Rocznik
Strony
425--436
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • University of Tehran, College of Engineering, P.O. Box 14395/515 Tehran, Iran
  • University of Tehran, College of Engineering, P.O. Box 14395/515 Tehran, Iran
Bibliografia
  • [1] Lvovich, V.F. (2012). Impedance spectroscopy: applications to electrochemical and dielectric phenomena. John Wiley & Sons.
  • [2] Hoja, J., et al. (2011). Method using square pulse excitation for high-impedance spectroscopy of anticorrosion coatings. IEEE Trans. Instrum. Meas., 60(3), 957-964.
  • [3] Lohrasbi, M., et al. (2013). Degradation study of dye-sensitized solar cells by electrochemical impedance and FTIR spectroscopy. Proc. of IEEE Energytech 2013, Cleveland OH, US, 1-4.
  • [4] Debenjak, A., et al. (2012). An assessment of water conditions in a PEM fuel cell stack using electrochemical impedance spectroscopy. IEEE PHM 2012, Beijing, China, 23-25.
  • [5] Lindahl, P.A., et al. (2012). A time-domain least squares approach to electrochemical impedance spectroscopy. IEEE Trans. Instrum. Meas., 61(12), 3303-3311.
  • [6] Kang, G., et al. (2012). Differentiation between normal and cancerous cells at the single cell level using 3-D electrode electrical impedance spectroscopy. IEEE Sensors J., 12(5), 1084-1089.
  • [7] Affanni, A., et al. (2012). Electrical impedance spectroscopy on flowing blood to predict white thrombus formation in artificial microchannels. IEEE I2MTC 2012, Graz, Autria, 1477-1480.
  • [8] Sanchez, B., Vandersteen, G., Rosell-Ferrer, J., Cinca, J., Bragos, R. (2011). In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy. Engineering in Medicine and Biology Society, EMBC, 2011, Boston, US, 2518-2521.
  • [9] Rojo, L., Mandayo, G.G., Castafio, E. (2013). Thin film YSZ solid state electrolyte characterization performed by electrochemical impedance spectroscopy. Spanish Conference on Electron Devices (CDE), Valladolid, Spain, 233-236.
  • [10] Kowalewski, M., Lentka, G. (2013). Fast high-impedance spectroscopy method using sinc signal excitation. Metrol. Meas. Syst., 20(4), 645-654.
  • [11] Karp, F.B., Bernotski, N.A., Valdes, T.I., Bö hringer, K.F., Ratner, Buddy, D. (2008). Foreign body response investigated with an implanted biosensor by in situ electrical impedance spectroscopy. Sensors Journal, IEEE, 8(1), 104-112.
  • [12] Nahvi, M. Hoyle, B.S. (2009). Electrical impedance spectroscopy sensing for industrial processes. IEEE Sensors J., 9(12), 1808-1816.
  • [13] Widrow, B., Kollar, I. (2008). Quantization noise. Cambridge University Press.
  • [14] Ensheng, D., et al. (2010). A pulsed approach for electrical impedance spectroscopy measurement. ISDEA 2010, 1(150), 154, 13-14.
  • [15] Hoja, J., Lentka, G. (2013). A family of new generation miniaturized impedance analyzers for technical object diagnostics. Metrol. Meas. Syst., 20(1), 43-52.
  • [16] Chabowski, K., Piasecki, T., Dzierka, A., Nitsch, K. (2015). Simple wide frequency range impedance meter based on AD5933 integrated circuit. Metrol. Meas. Syst., 22(1), 13-24.
  • [17] Morrison, J.L., Morrison, W.H., Christophersen, J.P., Motloch, C.G. (2014). Method of estimating pulse response using an impedance spectrum. United States Patent.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fb564c8-a4a8-4cde-8fc5-73be2cf968f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.