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1. Introduction

1.1. The context

The search for highly reliable systems has been intensifying. 
Such systems can be identified by implementing practices that reduce 
losses due to failures. Thus, maintenance plays a key role in organiza-
tions because it can significantly contribute to reducing both costs and 
failures, irrespective of the timing of failures during the useful life of 
the component. Preventive maintenance takes effect when the use of 
a particular policy enables the reduction of potential failures. Because 
these policies widely influence the safety and economy of operations, 
they are very important to improve the performance and reduce the 
cost of any producing systems.

Burn-in procedures consist of testing a new component for a given 
period before its active life in order to prevent early failures.

Burn-in has been studied by several researchers, including Kuo 
and Kuo[24], who presented a review of the main aspects of the pro-
cedure. Furthermore, Block and Savits [2] provided optimization 
examples and criteria. Regarding the adopted criteria, Block et al. 
[3] balanced residual life and variation (conditional survival) in the 
criterion of burn-in via the residual coefficient of variation, whereas 
Baskin [1] analysed burn-in using the general law of reliability. Perl-

stein et al.[29] analysed the cost of the optimal duration of burn-in, the 
components of which were characterized by hybrid exponential distri-
butions using Bayesian theory. Restrictions can be added, as demon-
strated by Chi and Kuo [13], who proposed a model to minimise costs 
under two restrictions, reliability and capacity.

The use of a combined policy is sometimes more effective than 
the use of a pure policy [13]. An example of combined policy is pre-
sented by Golmakani and Fattahipour [19], who aimed to determine 
the best period for inspection and replacement in the condition-based 
maintenance. However, research studies involving combined policies 
of burn-in with replacement are rare, and the ones that stand out are 
those by Jiang and Jardine [21], Canfield [5], Thangaraj and Rizwam 
[32], Drapella and Koznik [15].

A heterogeneous population of components that are present early 
and later fail related to exclusives failure models demands that the 
policy is adaptable. Therefore, a pure policy or the use of only one 
procedure is not effective.

1.2. The present contribution

Decisions regarding the burn-in and maintenance decisions are of 
great interest to researchers and decision-makers, and finding alterna-
tives that improve the performance of managed systems is a challenge. 
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Elementy składowe tworzące niejednorodną populację mogą prowadzić do nieprawidłowości funkcji intensywności uszkodzeń. 
W prezentowanej pracy badano populację komponentów składająca się z dwóch różnych subpopulacji: populacji komponentów 
słabych i populacji komponentów mocnych. Niejednorodność komponentów opisano za pomocą rozkładu mieszanego ich czasu 
pracy. Rozkład mieszany pozwala modelować dwa różne zachowania: krótki czas pracy charakterystyczny dla słabych elementów 
i długi czas pracy charakterystyczny dla elementów mocnych. Proste strategie konserwacyjne mogą nie dawać oczekiwanych 
efektów w przypadku komponentów, które różnią się pod względem charakteru uszkodzeń. Aby odpowiednio powiązać odmienne 
cele procedur sztucznego starzenia (wygrzewania, docierania) i wymiany profilaktycznej elementów składowych zaproponowano, 
w oparciu o podejście wielokryterialne, procedurę łączącą sztuczne starzenie i wymianę profilaktyczną, która uwzględnia także 
preferencje decydenta. Jako kryteria proponowanego modelu rozważano koszty i średnią trwałość resztkową. Wieloatrybutowa 
teoria użyteczności (MAUT) pozwala na tworzenie alternatyw, które licują z preferencjami osoby odpowiedzialnej za podejmowa-
nie decyzji eksploatacyjnych.
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The vast majority of research studies addresses the problem of burn-in 
with a single objective function. Although the adoption of combined 
policies represents an advance, combined procedures sometimes do 
not provide improvements, especially when the analysis that drove 
the combination of processes was focused on only one criterion. In 
fact, each process is characterized by unique features and is applied 
with specific objectives. Measuring the effect of combination based 
on only one aspect does not reflect the actual impact of the combined 
policy [25]. Thus, the use of a multi-criteria approach to build com-
bined policies becomes very prominent.

The use of multi-criteria methods to make decisions on mainte-
nance has been growing exponentially, as shown in a previous study 
[16]. Therefore, multi-criteria methods constitute an area of interest 
to the theoretical and practical realms, and this article aims to address 
this currently poorly explored problem with a joint model of burn-in 
and replacement based on a multi-criteria approach.

Cavalcante [7] presents a paper that considers a multi-criteria 
model for a combined burn-in and replacement process for a simple 
system with the cost and post-burn-in reliability.

This present research differs from the previous paper by consider-
ing the cost and mean residual life criteria on the development of a 
multi-criteria model to improve the burn-in and preventive replace-
ment combined process. The decision is based on the values of burn-
in (b) and replacement (y) that maximize the global utility function, 
furthermore is presented a methodology to apply burn-in and replace-
ment from the MAUT approach. In addition is performed a compari-
son of three policies: maximizing the residual mean life (Policy I), 
Minimizing the cost (Policy II) and using the methodology proposed 
in this study MAUT (Policy III) to aggregate the two criteria. The re-
sult of this comparison brings to the decision-maker important insights 
with managerial impact, what we consider, besides the other aspects, 
an essential contribution that was not present in previous works.

In addition to the introduction, this article consists of five sec-
tions. Section 2 provides a brief review of the concepts of burn-in 
and replacement. Section 3 presents the multi-attribute utility theory 
(MAUT) for burn-in and replacement analysis. A numerical applica-
tion for the model developed with a discussion of management in-
sightsis presented in section 4, and section 5 lists the conclusions.

2. Combined burn-in and replacement procedure mod-
elling literature

The burn-in procedure is based on a screening process that utilizes 
accelerated aging or simulates the conditions of use of all or a set of 
these items. The application of this procedure is justified by the as-
sumption that the population of a given set items can be divided into 
sub-populations of weak and strong items. The weak items tend to fail 
more quickly, whereas strong items fail due to wear-out much later 
than weak items.

The burn-in consists of operating the systems or components in 
situations that simulate the real operating conditions of equipment and 
/ or extreme conditions to which they may be subjected, as demon-
strated by [2]. During this process, the items are subjected to high 
temperatures and a high degree of vibration. Thereafter, items that 
have resisted and items that have failed (especially the representatives 
of the weak sub-population) can be identified. Items that resisted are 
considered to be of good quality, whereas those that failed are discard-
ed or repaired in addition to having their causes of failure analysed.

A series of decisions must be made when implementing burn-in. 
The first and most important one is the decision to applythe tech-
nique, which should be based on the potential effect of burn-in on 
the items in the system. Specifically, Cha and Finkelstein [11] warn 
that an unduly long burn-in time may damage items of good quality. 
The distribution of failures should have a high initial value for the 
application of the method to be justified. Furthermore, the reduction 

in 'infant mortality' (early failures), the changes in the life expectancy 
of items and application to the entire system or specific components 
should be considered.

Burn-in is aimed precisely at the period of infant mortality, which 
is a worrying phenomenon that is responsible for greatly dissatisfied 
clients who do not accept that a newly acquired asset should present 
failures. Manufacturers also do not tolerate this poor performance be-
cause discontented consumers harm the company's image, as noted by 
Tangaraj and Rizwam [16] and Wu and Clements-Croome [35].

Furthermore, additional costs are related to the replacement of de-
fective items or repairing them in the field, which increases the cost of 
warranty services. Generally, the causes of early failures are linked to 
problems of design, process control, finishing and installation.

Parts should only be replaced if operating costs increase, reli-
ability decreases (a growing failure rate) or items become obsolete 
over time. Replacements can be conducted in blocks or by age. These 
approaches are each characterized by specific characteristics and cir-
cumstances in which they are more suitable. According to Castro and 
Alfa [10], block replacement consists of changing a set of items in a 
certain period, whereas age-based replacement consists of replacing 
the item after a certain period of time since the start of its useful life 
or due to the occurrence of failures (whichever comes first). Block 
replacement is easier to apply but more expensive. Despite the diver-
gences, both modalities are assumed to renew the system.

If cost is adopted as the sole criterion of interest, a replacement 
policy can be implemented by constructing a model that defines the 
balance between the cost of preventive replacement and its benefits 
by determining the age at which the equipment should be changed 
in order to minimize the total cost expected of substitutions per unit 
of time. For a model to be able to describe more realistic situations, 
integrating replacement policies and burn-in by considering multiple 
criteria can bring significant benefits.

3. Proposed decision making modeling for burn-in and 
replacement

MAUT is based on axioms established by Von Neumann and Mor-
genstern [33] and searches to gather important objectives for making 
the decision based on multiple objectives. It employs the utility func-
tion to assess relevant objectives, allowing it to assess trade-offs. The 
use of MAUT yields a structuring approach to decision-making that 
can create a consistent decision model.

The key feature of MAUT is the use of utility functions for mod-
elling attributes. Utility theory describes the preference attributes on 
a scale of 0 (undesirable) to 1 (desirable), transforming the attribute 
measures to a utility scale in order to allow different attributes that can 
be compared with a common measurement scale [16].

MAUT maximizes the utility function, and this maximum is found 
via an elicitation process and must meet the conditions and axioms of 
the utility function. This approach as been widely used in various con-
texts, such as in policy analysis and health services, including quality of 
life analyses, political decisions, and environmental decisions [32, 17].

Chelst and Canbolat [14] proposed six steps for applying MAUT 
that facilitate the implementation and understanding of the method; 
these steps are being used in other studies [24] and are described 
below:

Recognize the decision alternatives. The alternatives should 1) 
reflect the decision problem that is being analysed.
The objectives must be listed and reflect the decision prob-2) 
lem.
Measurably establish the attributes to measure objectives; each 3) 
objective should have its own attribute.
Elicit the decision-maker's preference for each objective of de-4) 
cision based on the importance of each goal. Clarify the pref-
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erences of each stakeholder, with reference to the objectives, 
while reflecting your preferences.
Establish a utility function to characterize the decision-maker's 5) 
preferences regarding the alternatives, having established the 
function preference for each decision objective. A single util-
ity function is derived and scaled from 0 to 1 to find the global 
utility function.
Analyse decision alternatives for calculating a global utility 6) 
function: the optimal decision is made by optimizing the glo-
bal utility function.

MAUT includes both mathematical theory and a series of evalua-
tion techniques. The information obtained from the evaluation serves 
to classify alternatives, make choices or clarify a situation for the de-
cision-maker [34, 18]. MAUT has been used to aggregate the objec-
tive cost and mean residual life in a combined policy involving burn-
in and replacement, the cited characteristics of which are perfectly 
suited to the problem.

3.1. Assessment the attributes

The criteria to be assessed need to be defined in order to define a 
maintenance policy involving burn-in and replacement with a multi-
criteria approach. Thus, the role of the decision-maker is essential. 
We will discuss the criteria residual average life and cost; the decision 
variables are represented by b (the time of burn-in) and y (age for 
replacement).

In this article, the following notation is adopted:
Cf – Cost of replacement per failure
Cp – Cost of programmed replacement
Cr – Cost of repairs during burn-in
Cb – Expected cost of the burn-in
β	 –	Parameter	of	form
η	 –	Parameter	of	scale
b – Burn-in time
C(t) – Mean cost per unit of time
R(t) – Reliability of Function
Fs(t) – Function of simple accumulated distribution
F(t) – Function of mixed accumulated distribution
y – Replacement time
λ1 – utility function parameter
k1 – scale constant of cost
γ1 – utility function parameter
k2 – scale constants of MRL

3.2. Attribute mean residual life

The mean residual life can be interpreted by the decision-maker as 
an indication of customer satisfaction: the client is more likely to ac-
quire products of the same brand if such products have a long service 
life and good performance over their lifetime; as a result, the customer 
is more satisfied with products and plays his role for a given period 
[22].

The mean residual life function is given by the following expres-
sion [4]:

 µ t
E X t X t

R x dx
R t

if R t

if R t
t( ) =

− ≥{ } = ( )
( ) ( ) >

( ) =









∞

∫| ,

,

0

0 0

 (1)

The optimal period of burn-in can be defined by the point at which 
the corresponding mean residual life reaches its maximum [4]. Because 
X	is	the	lifetime,	we	must	find	a	b	that	maximizes	E[X−b|X>b].

Thus, maximizing the MRL (Mean Residual Life) will increase 
the possibility of the item remaining in working order for longer.

3.3. The attributesof cost

Jiang and Jardine [9] proposed a model that can determine the 
burn-in period and the optimum replacement interval given the het-
erogeneous (mixed) population.

The simple accumulated distribution function is given by 
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However, because we are analysing a heterogeneous distribution, 
F t p F y p F t( ) = ( ) + ( )1 1 2 2 , in which F1(t) and F2(t) are two simple 
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Figures 1 and 2 show the behaviour of the mean residual life and 
the cost for different periods of burn-in and replacement intervals; 
these figures can be used to verify the conflict between the analysed 
criteria.

The figures show that increasing the burn-in period allows the MRL 
to reach a maximum at a given y. Thereafter, the MRL begins to de-

Fig. 1. Behaviour of mean residual life (MRL) – y (replacement time) - b 
(burn-in time)

Fig. 1. Behaviour of mean residual life (MRL) – y (replacement time) - b 
(burn-in time)
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crease, and the cost function is minimized at another value of y. These 
trends clearly demonstrate the conflict between the decision criteria.

The age of a component directly correlates with its likelihood of 
failure. Depending on the parameters adopted, a combination of (b, y) 
that maximizes the MRL of the component is used, which is identifi-
able in the graphs.

The mean residual life varies significantly; therefore, it should be 
adopted as a performance criterion.

A relationship between the points of change of the failure rate 
and the mean residual life function can be established [28]. Thus, 
any failure rate that follows the bathtub curve has a mean residual 
life function with an inverted bath-tub shape, with a single point 
of change that precedes the point of change of the failure rate [27].
When the failure rate is unimodal, i.e., it grows to a certain point and 
thereafter begins to decrease, the MRL is consequently unimodal in 
the form of an inverted bath-tub and may be smaller than the MTTF 
(Mean time to failure) after the burn-in. Thus, the MRL after burn-
in must not exceed the MTTF as a constraint. Nevertheless, burn-in 
may not be necessary or economical for unimodal rates. For more 
details, see Chang [12].

3.4. Multi-attribute utility theory for MRL and cost

The preference of the decision-maker is described by utility func-
tions that consist of the attribute cost, which should be minimized, and 
the mean residual life, which must be maximized. The utility function 
models the preference of the decision-maker, where in the utility func-
tion dimension costs and mean residual life will be measured on the 
same scale, the utility scale. Each alternative measure for the time of 
burn-in (b) and replacement interval (y) can be evaluated by the glo-
bal utility function, and the trade-off between cost and mean residual 
life is evaluated by the decision-maker in utility levels.

The utility function for each of the attributes must be known to 
obtain the multi-attribute utility function [23].

To convert the cost function (function 2) and average residual life 
(function 1) in to utility values, mathematical functions that describe 
the utility function need to be studied [7,19,34].

We consider an exponential function for the utility function of the 
Cost,	U(C),	and	a	logistical	function	for	the	utility	of	MRL,	U(μ).	This	
choice is justified by the desire to minimize cost and maximize the 
MRL. This article proceeds to utility function return; the greater the 
cost, the lower the value of its utility function, and the higher the mean 
residual life return, the greater the value of its utility function.

Thus, the utility function for the cost can be represented by an 
exponential function:

 U C b y e C,( )( ) = −λ γ
1

1  (3)

The utility function for the mean residual life can be represented 
by a logistical function:

 U MRL b y e,( )( ) =
−

λ
γ
µ

2

2
 (4)

The values of λ1and γ1 as well as the values of λ2 and γ2 must be 
adjusted to represent the function value such that function 3 approaches 
1 when the cost function is minimized and 0 when the cost function is 
maximized. Furthermore, function 4 should approach 1 when the re-
sidual life is maximized and 0 when the residual life is minimized.

To use the aggregation procedure, the conditions of preferential 
independence need to be identified. In this study, we have assumed in-
dependence in the utility function, and additive independence for this 
assumption aims to generate the least restrictive model. Nevertheless, 
other preference structures can be used [19, 14]. With this assumption, 

the additive model may be used, in which k1 and k2 represent the scale 
constants. These constants may represent your preference by eliciting 
the preference of the decision maker, where k1+ k2 =1.When k1 ex-
ceeds k2, the decision-maker prioritizes cost over the average residual 
life, and when k2 exceeds k1, the decision-maker gives priority to the 
average residual life. The global utility function can be described for 
an additive function, as shown in equation 5 below.

 U(C, μ) = k1U(C) + k2U (μ) (5)

The alternatives are represented by the length of the burn-in and 
the replacement interval. Thus, each pair (b, y) is associated with a 
cost and a mean residual life and, consequently, a corresponding util-
ity function. Therefore, the pair of values (b, y) that maximizes the 
global utility function is optimal.

3.5. Methodology to apply MAUT for burn-in analysis

The steps proposed by Chelst and Canbolat [14] can be applied to 
implement MAUT for burn-in analyses as follows:

Recognize the decision alternatives; alternative decisions for 1) 
the analysed problem are the time of burn-in (b) and the time 
(age) to replacement (y).
Establish the objective of analysis; in this study, we proposed 2) 
two objectives: mean residual life and cost
Establish the attributes measurably; the mean residual life can 3) 
be measured using equation (1), and cost can be measured us-
ing equation (2);
Apply an elicitation procedure with the decision-maker to ob-4) 
tain the parameter utility analysis; we simulated values in nu-
merical approaches (section 4) demonstrating its variations.
Establish a utility function to characterize the decision maker's 5) 
preferences in order to obtain the parameter utility analysis 
with equations (3) and (4).
Analyse decision alternatives for calculating global utility 6) 
function; the best action maximizes the global utility described 
by equation (5).

A numerical application to illustrate the use of this methodology 
to apply MAUT to a burn-in analysis is presented below.

4. Numerical application and management insights

The parameters adopted and results of a numerical application of 
MAUT are shown in Table 1, where the results obtained for each set 
of parameters by applying the three policies: maximizing the mean re-
sidual life (Policy I), minimizing the cost (Policy II) and using MAUT 
(Policy III) to aggregate the two criteria.

The maximum mean residual life is shown for each parameter, 
and the cost associated with the maximum residual life is also shown 
when the cost function is minimized. This value corresponds to the 
mean residual life when the cost is minimized. Finally, the optimiza-
tion of the global utility function, the respective cost values, the mean 
residual life, and the values of b and y in weeks are given, where 

Fs t e
t

( ) = −
−

1
( )
η

β

 and 𝐹(𝑡)=𝑝1𝐹1(𝑦)+𝑝2𝐹2(𝑡).

The adoption of a criterion related to performance results in a more 
effective policy. As observed in the results, considering only the cost 
results in a lower mean residual life compared with considering a mixed 
policy. However, a higher mean residual life results in higher costs.

Based on the numerical analysis, the following observations 
should be emphasized for the proposed model:

1) Adopting a minimum cost for Policy I results in a small mean 
residual life. However, maximizing the mean residual life increases 
the cost. Therefore, a policy that considers both criteria is more ef-
ficient.
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Table 1: Parameters adopted and results obtained when adopting policies I(maximizing the residual life), II(minimizing the cost) and III(applying MAUT to optimize 
the cost and mean residual life (MRL))

Cost parameters mixed Failure distribution parameters Utility Function parameters   optimum Results
C0 Cr Cp Cf η1 β1 p1 η2 β2 p2 k1 λ1 γ1 k2 λ2 γ2 b y C mRl
0.2 0.9 2 13 7 1.2 0.4 125 4 0.6 0.55 1.389 2.6 0.45 2.18 73 max μ 2.639 12.227 0.589 93.448

min C 8.874 79.96 0.126 37.033
max U 7.543 40.786 0.184 66.657

0.3 0.9 2 13 7 1.2 0.4 125 4 0.6 0.55 1.437 2.6 0.45 2.183 73 max μ 2.639 12.227 0.618 93.448
min C 6.292 85.62 0.14 35.301
max U 4.747 43.909 0.204 66.371

0.1 0.9 2 13 7 1.2 0.4 125 4 0.6 0.55 1.321 2.6 0.45 2.183 73 max μ 2.639 12.227 0.561 93.448
min C 12.03 72.034 0.107 39.863
max U 10.561 36.169 0.159 68.067

0.2 1.8 2 13 7 1.2 0.4 125 4 0.6 0.55 1.4 2.55 0.45 2.184 73 max μ 2.639 12.227 0.6 93.448
min C 8.128 81.988 0.132 36.303
max U 6.629 41.694 0.193 66.663

0.2 0.45 2 13 7 1.2 0.4 125 4 0.6 0.55 1.38 2.61 0.45 2.183 73 max μ 2.639 12.227 0.584 93.448
min C 9.219 78.923 0.123 37.432
max U 7.943 40.163 0.18 66.853

0.2 0.9 4 13 7 1.2 0.4 125 4 0.6 0.55 1.498 2.8 0.45 2.183 73 max μ 2.639 12.227 0.732 93.448
min C 8.454 90.84 0.144 31.439
max U 7.023 46.67 0.208 62.046

0.2 0.9 1 13 7 1.2 0.4 125 4 0.6 0.55 1.351 2.6 0.45 2.183 73 max μ 2.639 12.227 0.518 93.448
min C 9.128 74.66 0.116 40.033
max U 7.897 38.175 0.169 68.649

0.2 0.9 2 26 7 1.2 0.4 125 4 0.6 0.55 1.571 2.5 0.45 2.183 73 max μ 2.639 12.227 0.969 93.448
min C 12.786 64.397 0.181 44.262
max U 12.168 40.548 0.22 62.872

0.2 0.9 2 9 7 1.2 0.4 125 4 0.6 0.55 1.306 2.6 0.45 2.184 73 max μ 2.639 12.227 0.473 93.448
min C 6.013 90.353 0.103 32.922
max U 2.383 39.937 0.176 72.023

0.2 0.9 2 13 3.5 1.2 0.4 125 4 0.6 0.55 1.29 2.6 0.45 2.054 73 max μ 2.324 7.191 0.911 101.401
min C 7.014 74.585 0.098 41.396
max U 6.572 37.302 0.146 70.623

0.2 0.9 2 13 9 1.2 0.4 125 4 0.6 0.55 1.43 2.6 0.45 2.254 73 max μ 2.761 14.171 0.507 89.811
min C 8.271 83.087 0.137 35.607
max U 5.537 42.158 0.204 67.19

0.2 0.9 2 13 7 2.4 0.4 125 4 0.6 0.55 1.35 2.6 0.45 2.08 73 max μ 6.471 5.885 1.22 99.64
min C 10.606 75.553 0.115 38.598
max U 10.274 38.953 0.165 65.874

0.2 0.9 2 13 7 0.6 0.4 125 4 0.6 0.55 1.358 2.6 0.45 2.254 73 max μ 5.646 5.142 0.877 89.784
min C 4.023 82.237 0.118 38.517
max U 3.162 38.757 0.176 70.877

0.2 0.9 2 13 7 1.2 0.8 125 4 0.2 0.55 2 2.65 0.45 2.35 73 max μ 8.7 14.799 1.195 85.416
min C 16.8 96.442 0.262 25.205
max U 15.89 55.605 0.329 48.181

0.2 0.9 2 13 7 1.2 0.3 125 4 0.7 0.55 1.327 2.6 0.45 2.147 73 max μ 2.502 10.038 0.543 95.578
min C 6.229 78.26 0.109 39.604
max U 4.516 39.065 0.164 70.884

0.2 0.9 2 13 7 1.2 0.4 250 4 0.6 0.55 1.163 2.54 0.45 1.433 73 max μ 2.884 16.147 0.477 202.803
min C 10.527 163.762 0.06 76.03
max U 9.745 80.307 0.09 139.174

0.2 0.9 2 13 7 1.2 0.4 80 4 0.6 0.55 1.716 2.6 0.45 3.72 73 max μ 2.456 9.293 0.709 55.547
min C 7.028 50.787 0.208 23.154
max U 4.692 26.215 0.306 42.614

0.2 0.9 2 13 7 1.2 0.4 125 8 0.6 0.55 1.288 2.6 0.45 2.113 73 max μ 2.652 12.434 0.582 97.616
min C 9.57 84.638 0.097 27.266
max U 7.653 40.283 0.179 69.816

0.2 0.9 2 13 7 1.2 0.4 125 2 0.6 0.55 1.534 2.6 0.45 2.204 73 max μ 2.705 13.28 0.569 92.423
min C 8.258 108.75 0.165 49.375
max U 7.48 51.63 0.198 69.775

0.2 0.9 2 13 7 1.2 0.4 125 4 0.6 0.7 1.389 2.6 0.3 2.185 73  max μ 2.639 12.227 0.589 93.448
                min C 8.874 79.96 0.126 37.033
                max U 8.353 52.841 0.149 55.919

0.2 0.9 2 13 7 1.2 0.4 125 4 0.6 0.4 1.389 2.6 0.6 2.185 73 max μ 2.639 12.227 0.589 93.448
                min C 8.874 79.96 0.126 37.033
                max U 5.997 29.929 0.253 77.913



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.18, No. 4, 2016604

sciENcE aNd tEchNology

2) Policy III, which uses MAUT to consider both the cost and 
mean residual life, indicates that the ideal burn-in and replacement 
interval (b + y) values for the defined structure of preferences (high-
lighted grey) are 7.543 and 40.786 weeks, respectively. This alterna-
tive offers a cost that represents approximately one third of the cost 
obtained by applying policy I and a mean residual life that represents 
an increase of almost 30% compared with the value obtained using 
policy II, which yields a utility of 0.801. Without a multi-criteria 
analysis, the decision-maker cannot visualize this result, i.e., cannot 
realize the trade-off between objectives.

3) Increasing the burn-in cost decreases the optimal burn-in length 
because the improvement in the performance of the items will not 
compensate for the cost of the procedure. In order to reduce the im-
pact, the time until the replacement tends to be longer. The same oc-
curs if the cost of preventive replacement and repairs during the burn-
in increase. If these costs are reduced, the situation will be reversed. 
However, if the replacement by failure cost increases, the policy will 
tend to indicate a longer burn-in time and a shorter interval until re-
placement, which results in lower costs.

4) The effects of k1 and k2 were also analysed. For a k1 value 
higher than k2, the cost of the optimal policy is lower. However, the 
mean residual life cannot be high. For a k2 value higher than k1, the 
mean residual life is high, which increases costs. Nevertheless, the 
utility function balances the two previous policies. Thus, it can reflect 
the preference of the decision-maker

5) For example, the decision-maker can be committed to deliver 
a longer residual life and clearly know the cost associated with this 
decision. However, if the decision-maker has a preference for mini-
mizing the cost, he will know the corresponding residual life. The de-
cision-maker can assess the consequences and evaluate the attributes 
by comparing both the maximum and the minimum for a trade-off, 
creating the possibility of an improved decision that incorporates his 
preference.

The results shown in Table 1 indicate that variations in cost pa-
rameters alter only the solutions found when the optimization is based 
on cost or the overall utility function because the approach that con-
siders the maximization of the mean residual life does not take costs 
into account. The shape parameter is known to be associated with the 
degradation	of	the	population.	A	higher	β1	value	promotes	frequent	
early failures. Therefore, burn-in procedures need to be prioritized, 
and	components	need	 to	be	 replaced	after	a	 short	 time.	 If	β2	 is	 re-
duced, degradation by age will decrease, allowing the definition of 
longer replacement periods.

We also varied the distribution parameters, which modified the re-
sults obtained by the three policies presented. Reducing the scale pa-
rameter	of	the	first	portion	of	the	distribution	(η1)	indicates	that	more	
frequent replacements because failures tend to occur sooner. Thus, re-
placements are required to prevent malfunction. The behaviour of the 

policies	is	similar	if	η2	increases,	which	will	imply	an	increase	in	the	
replacement period, with a lower cost and higher mean residual life.

Changing the proportion of the different distributions that com-
prise the mixed distribution of items yields interesting results. For a 
higher value of p1, the length of the burn-in period is extended. As the 
proportion of the second distribution decreases, the replacement pe-
riod increases. Increasing the F2 proportion produces similar results 
because this population primarily consists of “strong items” that need 
to be replaced sooner.

5. Conclusions

Decisions regarding time of burn-in and replacement intervals are 
complex, and decision-makers should not ignore the influence of the 
decision on the customers’ perceptions of products. Burn-in aims to 
avoid early failures associated with negative consequences with cus-
tomers; however, the product is placed on the market after tests, and 
its residual life performance will be evaluated by consumers, which 
is represented in the MAUT by the mean residual life attribute. The 
mean residual life may play a more important role for complex equip-
ment that is difficult to access and highly available to any outfit. How-
ever, decision-makers responsible for competitively priced products 
may be more interested in minimizing the cost.

In this study, we developed a model based on MAUT to address 
the decision problem related to burn-in with replacement. Until fairly 
recently, models that aimed to minimize costs predominated such de-
cisions. However, performance criteria are very important and may 
be more important than cost in some cases. Several objectives may be 
important, and these objectives may sometimes conflict. When mod-
elling the problem, more than one aspect can be considered by using 
a multi-criteria approach. A range of methods is available for model-
ling, and the decision-maker must select the method best suited for the 
situation. Thus, the decision-maker will be able to make decisions that 
are more on target because a maintenance policy is obtained that can 
prevent different types of faults by combining applicable procedures 
that consider multiple objectives.

The preventive maintenance of items characterized by the occur-
rence of failures both at the beginning and the end of useful life is 
best used under a combined policy of burn-in and replacement that 
considers the cost and residual life of the components. In accordance 
with the degree of preference defined by the decision-maker, the ap-
plication of MAUT may well represent the situations encountered in 
real life. The MAUT modelling for the decision to use burn-in with 
replacement proved to be an effective approach, wherein the decision 
maker can easily assess the maximum and minimum alternatives for 
each attribute and explicitly evaluate trade-offs that are crucial to the 
modelling goal.
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