PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigation on specimen geometry effect on the ctod value for VL-E36 shipbuilding steel

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are special cases in the marine industry, where additional material tests, such as the fracture toughness test, must be performed. Additional fracture toughness tests, such as CTOD (Crack Tip Opening Displacement), are typically performed on three-point bend specimens. The dimension that defines all the specimen dimensions is the thickness of the material to be tested. It is recommended by classification societies (e.g. DNVGL) to test specimens that are twice as high as the material thickness. The width determines the length and, therefore, the weight of the specimen which, for a 100 mm plate is over 140 kg. Current ASTM E1820, BS7448-1 and ISO 12135 testing standards also allow for proportions other than those recommended. This results in a much smaller test piece. Reducing the specimen size allows the testing machine to achieve lower forces than a specimen with a width to thickness ratio of two. This paper presents the effect of changing the specimen geometry on CTOD test results. Research was performed for specimens with a height to thickness ratio of one and two. Abaqus software was used for numerical calculations. The numerical results were, at selected points, verified experimentally.
Słowa kluczowe
Rocznik
Tom
Strony
110--116
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Narutowicza 11/12 80-233 Gdańsk Poland
Bibliografia
  • 1. K. Sun, Y. Hu, Y. Shi, and B. Liao, ‘Microstructure Evolution and Mechanical Properties of Underwater Dry Welded Metal of High Strength Steel Q690E Under Diff erent Water Depths,’ Polish Marit. Res., vol. 27, no. 4, pp. 112–119, Dec. 2020, doi: 10.2478/pomr-2020-0071.
  • 2. J. Kowalski, Ł. Licznerski, M. Supernak-Marczewska, and K. Emilianowicz, ‘Infl uence of Process of Straightening Ship Hull Structure Made of 316L Stainless Steel on Corrosion Resistance and Mechanical Properties,’ Polish Marit. Res., vol. 27, no. 4, pp. 103–111, Dec. 2020, doi: 10.2478/pomr-2020-0070.
  • 3. X. Li, Z. Zhu, Y. Li, and Z. Hu, ‘Design and Mechanical Analysis of a Composite T-Type Connection Structure for Marine Structures,’ Polish Marit. Res., vol. 27, no. 2, pp. 145–157, Jun. 2020, doi: 10.2478/pomr-2020-0036.
  • 4. K. Woloszyk, Y. Garbatov, J. Kowalski, and L. Samson, ‘Experimental and Numerical Investigations of Ultimate Strength of Imperfect Stiffened Plates of Different Slenderness,’ Polish Marit. Res., vol. 27, no. 4, pp. 120–129, Dec. 2020, doi: 10.2478/pomr-2020-0072.
  • 5. Y. Zilin, W. Yu, Y. Xuefeng, G. Anping, Z. Rong, and J. Yanjie, ‘Investigations of Mechanical Properties of API P110 Steel Casing Tubes Operated in Deep-Sea Sour Condensate Well Conditions,’ Polish Marit. Res., vol. 27, no. 3, pp. 121– 129, Sep. 2020, doi: 10.2478/pomr-2020-0053.
  • 6. A. Neimitz, Mechanika Pękania. Warszawa: Wydawnictwo Naukowe PWN, 1998.
  • 7. F. C. Campbell, Fatigue and Fracture: Understanding the Basics. 2012.
  • 8. W. Dahl and P. Langenberg, ‘Fracture Toughness of Metallic Materials,’ in Encyclopaedia of Materials: Science and Technology (Second Edition), 2001, pp. 3336–3340.
  • 9. Polski Rejestr Statków, Rules For Classifi cation and Construction on sea-going ships, Part IX, Materials and Welding. Gdańsk: PRS, 2021.
  • 10. DNV, DNV OFFSHORE STANDARDS, DNV-OS-B101, Metallic materials. DNV AV, 2021.
  • 11. ISO, ISO 12135:2016 Metallic materials — Unified method of test for the determination of quasistatic fracture toughness. Geneva, 2016.
  • 12. ISO, Metallic materials - Method of test for the determination of quasistatic fracture toughness of welds (ISO 15653:2018). Geneva: ISO, 2018.
  • 13. Standards Norway, NORSOK STANDARD M-101, Structural steel fabrication, 5th ed. Lysaker, 2011.
  • 14. BSI, BS 7448-1:1991 - Fracture mechanics toughness tests. Method for determination of KIC, critical CTOD and critical J values of metallic materials. London: BSI, 1991.
  • 15. Det Norske Veritas (DNV), ‘DNV-OS-C401 Fabrication and Testing of Offshore Structures,’ no. October, 2014.
  • 16. The Engineering Equipment and Materials Users’ Association, Construction Specification for Fixed Offshore Structures in the North Sea, Publication No. 158 (19 9 4 Edition), Amendment No, 4, . EEMUA, 2005.
  • 17. T. Meshii, K. Lu, and R. Takamura, ‘A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region,’ Eng. Fract. Mech., vol. 104, pp. 184–197, 2013, doi: 10.1016/j. engfracmech.2013.03.025.
  • 18. ASTM International, ‘ASTM E1820 - 18a Standard Test Method for Measurement of Fracture Toughness,’ 2018.
  • 19. T. Kawabata , T. Tagawa, T. Sakimoto, Y. Kayamori, M. Ohata, Y. Yamashita, E. Tamura, H. Yoshinari, S. Aihara, F. Minami, H. Mimura, Y. Hagihara ‘Proposal for a new CTOD calculation formula,’ Eng. Fract. Mech., vol. 159, pp. 16–34, 2016, doi: 10.1016/j.engfracmech.2016.03.019.
  • 20. T. Kawabata T. Tagawa, Y. Kayamori, M. Ohata, Y Yamashita, M Kinefuchi, H. Yoshinari, S. Aihara, F. Minami, H, Mimura, Y. Hagihara, ‘Applicability of new CTOD calculation formula to various a0/W conditions and B × B configuration,’ Eng. Fract. Mech., vol. 179, pp. 375–390, 2017, doi: 10.1016/j.engfracmech.2017.03.027.
  • 21. A. Wells, ‘Application of fracture mechanics at and beyond general yield, Report No. M13/63,’ Br. Weld. J., pp. 563–590, 1963.
  • 22. J. Kowalski and J. Kozak, ‘The Effect of Notch Depth on CTOD Values in Fracture Tests of Structural Steel Elements,’ Polish Marit. Res., vol. 25, no. 2, pp. 85–91, 2018, doi: 10.2478/pomr-2018-0058.
  • 23. ISO, ISO 6892-1:2016 Metallic materials — Tensile testing — Part 1: Method of test at room temperature. Geneva, 2016.
  • 24. H. Hollomon, ‘Tensile deformation.’ Aime Trans , vol. 12, no. (4), pp. 1–22, 1945.
  • 25. J. Kowalski and J. Kozak, ‘Numerical Model of Plastic Destruction of Thick Steel Structural Elements,’ Polish Marit. Res., vol. 25, no. 2, pp. 78–84, 2018, doi: 10.2478/ pomr-2018-0057.
  • 26. Y. Bao and T. Wierzbicki, ‘A comparative study on various ductile crack formation criteria,’ J. Eng. Mater. Technol. Trans. ASME, vol. 126, no. 3, pp. 314–324, 2004, d o i : 10.1115/1.1755244.
  • 27. Dassault Systems, Abaqus 2019 Documentation. Providence: Dassault Systèmes.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fb2381c-bf49-4e83-9af2-cf3c61a16d5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.