PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical seismic coefficients of homogeneous earth dams prediction by a FELA-ANN approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research study, a combination of lower and upper bound finite element limit analysis (FELA) and artificial neural network (ANN) has been adopted in order to forecast critical seismic coefficients (kc) of homogeneous earth dams (HED) subjected to pseudo-static seismic loading. To achieve this, the results of kc obtained by OptumG2 software were used in the development of the ANN and MR models. The ANN models have shown higher prediction performance than the MR models based on the performance indices. The most appropriate architecture was found 8-14-1, as this gave the best kc predict with the minimum statistical measures of error and the high determination coefficient (> 99%). Consequently, the ANN model can be used to easily and accurately predict kc value of the HED as the best substitute for the conventional methods.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Faculty of Technology, Hydraulics Department, University of Batna 2, Batna, Algeria
autor
  • Faculty of Technology, Hydraulics Department, University of Batna 2, Batna, Algeria
  • Research Laboratory in Subterranean and Surface Hydraulics (LARHYSS), Faculty of Sciences and Technology, Mohamed Khider University, Biskra, Algeria
Bibliografia
  • [1] Newmark, N.M. (1965). Effects of earthquakes on dams and embankments. Geotechnique, 15(2), 139-160.
  • [2] Loukidis, D., Bandini, P., & Salgado, R. (2003). Stability of seismically loaded slopes using limit analysis. Geotechnique, 53(5), 463-480.
  • [3] Tsai, C.C., & Chien, Y.C. (2016). A simple procedure to directly estimate yield acceleration for seismic slope stability assessment. Japanese Geotechnical Society Special Publication, 2(25), 915-919.
  • [4] Leshchinsky, D., & San, K.C. (1994). Pseudostatic seismic stability of slopes: Design charts. Journal of Geotechnical Engineering, 120(9), 1514-1532.
  • [5] Baker, R., Shukha, R., Operstein, V., & Frydman, S. (2006). Stability charts for pseudo-static slope stability analysis. Soil Dynamics and Earthquake Engineering, 26(9), 813-823.
  • [6] Tan, D., & Sarma, S.K. (2008). Finite element verification of an enhanced limit equilibrium method for slope analysis. Geotechnique, 58(6), 481-488.
  • [7] Zhou, H., Liu, H., Wang, L., & Kong, G. (2018). Finite element limit analysis of ultimate lateral pressure of XCC pile in undrained clay. Computers and Geotechnics, 95, 240-246.
  • [8] Keawsawasvong, S., & Ukritchon, B. (2017). Stability of unsupported conical excavations in non-homogeneous clays. Computers and Geotechnics, 81, 125-136.
  • [9] Das, S.K. (2013). Artificial neural networks in geotechnical engineering: modeling and application issues. In Metaheuristics in water, geotechnical and transport engineering (pp. 231-270).
  • [10] Krabbenhoft, K., Lyamin, A.V., & Krabbenhoft, J. (2017). Optum Computational Engineering (Optum G2), Available on: < www. optumce. Com >.
  • [11] Khatri, V.N., Kumar, J., & Akhtar, S. (2017). Bearing capacity of foundations with inclusion of dense sand layer over loose sand strata. International Journal of Geomechanics, 17(10), 06017018.
  • [12] Abrahart, R.J., See, L.M., & Solomatine, D.P. (Eds.). (2008). Practical hydroinformatics: computational intelligence and technological developments in water applications (Vol. 68). Springer Science & Business Media.
  • [13] Verma, A.K., Singh, T.N., Chauhan, N.K., & Sarkar, K. (2016). A hybrid FEM-ANN approach for slope instability prediction. Journal of The Institution of Engineers (India): Series A, 97(3), 171-180.
  • [14] Choobbasti, A.J., Farrokhzad, F., & Barari, A. (2009). Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arabian Journal of Geosciences, 2(4), 311-319.
  • [15] Haykin, S. (1999). Adaptive filters. Signal Processing Magazine, 6(1)
  • [16] Şahin, M., Kaya, Y., & Uyar, M. (2013). Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Advances in Space Research, 51(5), 891-904.
  • [17] Erzin, Y., & Turkoz, D. (2016). Use of neural networks for the prediction of the CBR value of some Aegean sands. Neural Computing and Applications, 27(5), 1415-1426.
  • [18] Garson, G.D. (1991). Interpreting neural-network connection weights. AI Expert, 6(4), 46-51.
  • [19] Das, S.K., & Basudhar, P.K. (2006). Undrained lateral load capacity of piles in clay using artificial neural network. Computers and Geotechnics, 33(8), 454-459.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0fab57fe-62c0-40ea-9b43-2a3a766807d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.