PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of surface curvature on sessile droplet contact angle of nanofuids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the change in contact angle of droplets for three nanofluids, i.e., water- Al2O3, water-TiO2 and water-Cu. Nanoparticles were tested at the concentration of 0.01, 0.1, and 1% by weight. Although dispersants were not used to stabilize the suspension, the solutions tested exhibited satisfactory stability. Ultrasonic vibration was used in order to stabilise the dispersion of the nanoparticles. Experimental measurements were performed for horizontal stainless steel (316) tube of three diameters, i.e., 1.6, 3 and 5 mm, and flat stainless steel plates. The results obtained show that the contact angle of tested nanofluids depends strongly on nanoparticle concentration as well as the curvature of the substrate.
Słowa kluczowe
Rocznik
Tom
Strony
3--12
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk
autor
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, Narutowicza 11/12, 80-233 Gdańsk
Bibliografia
  • [1] Wu H.Y., Cheng P.: An experimental study of convective heat transfer in silicon microchannels with different surface conditions. Int. J. Heat Mass Tran. 46(2003), 2547–2556.
  • [2] Hsieh S., Lin C.: Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces. Int. J. Heat Mass Tran. 52(2009), 260– 270.
  • [3] Pulipaka S.: The effect of surface wettability on heterogeneous condensation. MSc thesis, University of Cincinnati, Cincinnati 2009.
  • [4] Cieśliński J.T.: Modelling of nucleate boiling. Gdańsk University of Technology, Gdańsk 2005 (in Polish).
  • [5] Bankoff S.G.: Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J. 4(1958), 1, 24–26.
  • [6] Fritz W.: Berechnung des Maximalvolumens von Dampfblasen. Physikalische Zeitschrift. XXXVI (1935), 379–384.
  • [7] Hatton A.P., Hall I.S.: Photographic study of boiling on prepared surface. Proc. Int. Heat Tran. Conf. 3rd, Chicago 1966, 24–37.
  • [8] Wang C.H., Dhir V.K.: Effect of surface wettability on active nucleate site density during pool boiling of water on a vertical surface. Trans. ASME J. Heat Tran. 115(1993), 670–679.
  • [9] Kandlikar S.G.: A theoretical model to predict pool boiling FC incorporating effects of contact angle and orientation. J. Heat Tran. 123(2001), 1071–1079.
  • [10] Adamson A.W.: Physical chemistry of surfaces. 5th edn. Wiley InterScience, Wiley&Sons Inc., New York 1990.
  • [11] Dutkiewicz E.T.: Physical chemistry of surfaces. WNT, Warsaw 1998 (in Polish).
  • [12] Doniec A.: Determination of the wetting angle woth account of the sessile droplet shape and volume. Chem. Proc. Eng. 2(1993), 269–288 (in Polish).
  • [13] Rybnik R., Trela M.: Influence of substrate material and surface roughness on the contact angle of sessile drops. Proc. Int. Symp. Heat Exchange and Renewable Energy Sources 7th, Świnoujście 1998, 315–322.
  • [14] Grajewski A.: Contact angle and sessile drop diameter hysteresis on metal surfaces. Int. J. Heat Mass Tran. 51(2008), 4628–4636.
  • [15] Kim H.D., Kim J., Kim M.H.: Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int. J. Multiphase Flow 33(2007), 691–706.
  • [16] Golubovic M.N., Madhawa Hettiarachchi H.D., Worek W.M., Minkowycz W.J.: Nanofluids and critical heat flux, experimental and analytical study. Appl. Therm. Eng. 29(2009), 1281–1288.
  • [17] Semiczek-Szulc S.: Wetting of metal surfaces. Bull. IF-FM PASci, 47/915/78 (in Polish).
  • [18] Choi S.: Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows. ASME, FED 231/MD 66, 1995, 99–105.
  • [19] Vafaei S., Borca-Tasciuc T., Podowski M.Z., Purkayastha A., Ramanath G., Ajayan P.M.: Effect of nanoparticles on sessile droplet contact angle. Nanotechnology 17(2006), 10, 2523–2527.
  • [20] Sefiane K., Skilling J., MacGillivray J.: Contact line motion and dynamic wetting of nanofluid solutions. Advances Colloid Interface Sci. 138(2008), 101–120.
  • [21] Cieśliński J.T., Krygier K.: Measurements of droplet contact angle of nanofluids. Proc. Of the XIVth Int. Symp. Heat Transfer and Renewable Sources of Energy (A.A. Stachel, D. Mikielewicz eds.) Wyd. ZUT, Szczecin 2012, 391– 398.
  • [22] ] Kim S.J., Bang I.C., Buongiorno J., Hu L.W.: Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Tran. 50(2007), 4105–4116.
  • [23] Kruss Technical Information DSA10 2010/10. Information Broschure. www.kruss.de
  • [24] Zielke P., Szymczyk J., Delgado A.: Bestimmung kritischer Radien von Tropfen auf Oberflächen mit einem Gradienten der Benetzbarkeit. PAMM, 8(2008), 10651–10652.
  • [25] Cieśliński J.T., Krygier K.: Sessile droplet contact angle of water-Al2O3, water-TiO2 and water-Cu nanofluids. World Conf. on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, 8th, Lisbon, Portugal, 16- 20 June 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f9cf736-f9e7-4ad3-b376-e92a0f44f487
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.