PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An impact of surface spray and pressing temperature on the properties of high density fibreboards

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An impact of surface spray and pressing temperature on the properties of high density fibreboards. The objective of this study was to investigate the effects of chosen process parameters: water spray amount and 3rd press heating section temperature on the mechanical, physical properties of ultrathin (2.5 mm) industrial high-density fibreboards (HDF) produced with 5% of recovered HDF (rHDF) addition. Boards were produced with 0 ml/m2 – V0, 8 ml/m2 – V8, 16 ml/m2 – V16 and 32 ml/m2 – V32 of surface water spray addition on top and bottom side in industrial hot continuous press with 3rd heating section temperature setups: 145oC (V45), 160oC (V60) and 175oC (V75). After variants examination with different surface water spray amount it was found, that there is roughly linear positive correlation for MOR increase for up to 10% comparing V0 to V32 and for surface roughness decrease for up to 31%. Surface water spray improved IB for up to 21% while WA decreased for up to 9% for V8 comparing to HDF produced without surface water spray addition. According to 3rd press heating section temperature influence – MOR and MOE has increased while other mechanical properties worsen with pressing temperature increase – drop in IB and SS.
PL
Wpływ natrysku oraz temperatury prasowania na właściwości płyt pilśniowych suchoformowanych wysokiej gęstości. Celem badań było określenie wpływu ilości natrysku wody oraz temperatury 3-ciej sekcji grzewczej prasy, jako parametrów procesowych, na właściwości mechaniczne i fizyczne ultra cienkich płyt (2,5 mm) włóknistych wysokiej gęstości (HDF), wytwarzanych z 5% udziałem włókien poużytkowych (rHDF). W pierwszej części użyto natrysku wody na powierzchnię górną i dolną prasowanego materiału w ilościach: 0 ml/m2, 8 ml/m2, 16 ml/m2 i 32 ml/m2. W drugiej części zastosowano zmienne temperatury 3-ciej sekcji grzewczej przemysłowej prasy ciągłego działania, tj.: 145oC, 160oC i 175oC. Po przebadaniu płyt z różnym natryskiem wody na powierzchnię, zauważono pozytywną linową zależność dla MOR – wzrost do 10% porównując skrajne badane warianty. Podobnie było w przypadku chropowatości powierzchni, która maleje o 31%. Natrysk wody na powierzchnię poprawia IB do 21% oraz obniża WA o 9% porównując ze sobą warianty 0 i 8 ml/m2. W przypadku wpływu temperatury 3-ciej sekcji grzewczej prasy to takie parametry mechaniczne jak MOR i MOE poprawiają się wraz ze wzrostem tej temperatury, a inne jak: IB czy SS pogarszają.
Twórcy
autor
  • Department of Technology and Entrepreneurship in Wood Industry, Faculty of Wood Technology/Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
  • Department of Technology and Entrepreneurship in Wood Industry, Faculty of Wood Technology/Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW
Bibliografia
  • 1. AYDIN I., GURSEL C., SEMRA C., CENK D. 2006. Effects of Moisture Content on Formaldehyde Emission and Mechanical Properties of Plywood.” Building and Environment 41 (10): 1311–16. https://doi.org/10.1016/j.buildenv.2005.05.011.
  • 2. BEKHTA P., NIEMZ P. 2009. Effect of Relative Humidity on Some Physical and Mechanical Properties of Different Types of Fibreboard. European Journal of Wood and Wood Products 67 (3): 339–42. https://doi.org/10.1007/s00107-009-0330-4.
  • 3. BIALECKI F., POHL P., SYDOR M. 2008. Investigations on Sealing Material Consumption in Relation with the Roughness Parameters of HDF Boards. Electronic Journal of Polish Agricultural Universities. Series Wood Technology, 11(4). http://www.ejpau.media.pl/volume11/issue4/abs-17.html Accessed 03 2020.
  • 4. CAI Z., MUEHL J. H. and WINANDY J. E. 2006. Effects of Panel Density and Mat Moisture Content on Processing Medium Density Fibreboard. Forest Products Journal 56 (10): 20–25.
  • 5. CAMPANA C., LEGER R., SONNIER R., FERRY L., IENNY P. 2018. Effect of Post Curing Temperature on Mechanical Properties of a Flax Fibre Reinforced Epoxy Composite. Composites Part A: Applied Science and Manufacturing 107: 171–79.https://doi.org/10.1016/j.compositesa.2017.12.029.
  • 6. CARLL C. G. 1996. Review of Thickness Swell in Hardboard Siding Effect of Processing Variables, United States Department of Agriculture, Forest Service, General Technical Report FPL-GTR-96.
  • 7. DENG J., XIE Y. Q., FENG M. 2006. An Experimental Study of Microwave Preheating of an MDF Fiber Mat Moisture. Forest Products Journal 56(6): 76–81.
  • 8. EN 12460-5: Wood-Based Panels – Determination of Formaldehyde Release – Extraction Method (Called the Perforator Method). 2016.
  • 9. EN 322: Wood-Based Panels – Determination of Moisture Content. 1993.
  • 10. Food and Agriculture Organization. Forestry Production and Trade. 2020. http://www.fao.org/fa ostat/en/#data/FO.
  • 11. GANEV S., CLOUTIR A., BEAUREGARD R., GENDRON G. 2003. Effect of Panel Moisture Content and Density on Moisture Movement in MDF. Wood and Fiber Science 35 (1): 68–82.
  • 12. GUL W., KHAN A., SHAKOOR A. 2017. Impact of Hot Pressing Temperature on Medium Density Fiberboard (MDF) Performance. Advances in Materials Science and Engineering 2017. https://doi.org/10.1155/2017/4056360.
  • 13. HWANG C. Y., HSE C. R., SHUPE T. F. 2005. Effects of Recycled Fiber on the Properties of Fiberboard Panels.” Forest Products Journal 55. No. 1 (9828): 61–64.
  • 14. KHALIL A. H. P. S., FIRDAUS N. M. Y., AMIS M., RIDZUAN R. 2008. The Effect of Storage Time and Humidity on Mechanical and Physical Properties of Medium Density Fiberboard. Polymer-Plastics Technology and Engineering 47 (10): 1046–53.
  • 15. HASSANI V., HAMID R. TAGHIYARI L., SCHMIDT O., SADEGH M., PAPADOPOULOS A. 2019. Mechanical and Physical Properties of Oriented Strand Lumber (OSL): The Effect of Fortification Level of Nanowollastonite on UF Resin. Polymers 11 (11): 1–14. https://doi.org/10.3390/polym11111884.
  • 16. HONG M. K., LUBIS M. A. R. and PARK B. D. 2017. Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard. Journal of the Korean Wood Science and Technology 45 (4): 444–55. https://doi.org/10.5658/WOOD.2017.45.4.444.
  • 17. IOS-MAT-0003 Formaldehyde Requirements of Wood, Wood-Based and Wood-like Natural Materials and Products. 2020. Vol. 1.
  • 18. JEREMEJEFF J. 2012. Investigation of UF-Resins - the Effect of the Formaldehyde / Urea Molar Ratio during Synthesis. Master of Science Thesis, 1–108.
  • 19. KARGARFARD A., LATIBARI J. A. 2014. The Effect of Press Temperature on Properties of Medium Density Fiberboard Produced from Eucalyptus Camaldulensis Fibers, International Journal of Lignocellulosic Products 1 (2): 142–150.
  • 20. KOROS R. C., POLJANS P. B., POLJANSEK I., OGORELEC P. 2011. Curing Kinetics Study of Melamine – Urea – Formaldehyde Resin. Journal of Thermal Analysis and Calorimetry 109 (3): 1–10. https://doi.org/10.1007/s10973-011-1883-0.
  • 21. LATIBARI A., GHASEBINASAB H., ROOHNIA M., KARAGARFARD A. 2012. The Effect of Fiber Moisture and Drying Temperature on Hardwood Fiber Physical Chemistry and Strength of Medium Density Fiberboard. Lignocellulose Journal 1 (1): 3–12.
  • 22. MEYER N. and THOEMEN H. 2007. Gas Pressure Measurements during Continuous Hot Pressing of Particleboard. Holz als Roh- und Werkstoff 65 (1): 49–55. https://doi.org/10.1007/s00107-006-0140-x.
  • 23. MIHAJLOVA J., SAVOV V., BORSHUKOV Y. 2014. Effect of some technological factors on physical properties of medium density fiberboard made of hard wood species. KING INDUSTRY AND ENGINEERING DESIGN 1 (5): 147–54.
  • 24. Multi-Opening Press System, Accessed February 5, 2020. www.dieffenbacher.com/en/wood-based-panels/products/press-systems/multi-opening-press-system.
  • 25. NICEWICZ D. and MONDER S. 2014. The Influence of Moisture of Fiber Mats on the Properties of MDF Boards. Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology 88: 174–77.
  • 26. NICEWICZ D., SALA C. M. 2014. Właściwości i Zastosowanie Płyt MDF. Warszawa: Wydawnictwo SGGW.
  • 27. ONIŚKO W. 2011. Nowe Generacje Tworzyw Drzewnych i Nowoczesne Technologie. In Drewnowizja. Poznań: Instytut Technologii Drewna w Poznaniu. https://www.drewno.pl/artykuly/7524,nowe-generacje-tworzyw-drzewnych-i-nowoczesne-technologie.html Accessed: 03 2020.
  • 28. PEREIRA M. C., BLANCHARD C., CARVALHO L. M. H., COSTA C. A.V. 2004. High Frequency Heating of Medium Density Fiberboard (MDF): Theory and Experiment. Chemical Engineering Science 59 (4): 735–45. https://doi.org/10.1016/j.ces.2003.09.038.
  • 29. PKLN-8MAACE: Swedwood International Corporate Technical Standard Specification of HDF, Version: 04. 2011.
  • 30. ROFFAEL E. 2012. Influence of Resin Content and Pulping Temperature on the Formaldehyde Release from Medium Density Fibreboards (MDF). European Journal of Wood and Wood Products 70 (5): 651–54. https://doi.org/10.1007/s00107-012-0614-y.
  • 31. ROSILEI G. A, CLOUTIRR A., RIEDL B. 2005. Dimensional Stability of MDF Panels Produced from Fibres Treated with Maleated Polypropylene Wax Dimensional Stability of MDF Panels Produced from Fibres Treated with Maleated Polypropylene Wax, no. November. https://doi.org/10.1007/s00226-005-0028-7.
  • 32. SALA C. M. 2020. Wpływ Natrysku Wody Na Przegrzewanie Kobierca Włóknistego Płyt HDF, z Dodatkiem Włókien Poużytkowych. Biuletyn Informacyjny OB-RPPD 1–2: 45–55. https://doi.org/doi.org/.
  • 33. SALA C. M., ROBLES E., KOWALUK G. 2020. Influence of Adding Offcuts and Trims with a Recycling Approach on the Properties of High-Density Fibrous Composites. Polymers 12 (6). https://doi.org/10.3390/POLYM12061327.
  • 34. SALA C. M., ROBLES E., GUMOWSKA A., WRONKA A., KOWALUK G. 2020. Influence of Moisture Content of Selected Wood-Based Composites on Their Bending Strength and Modulus of Elasticity, BioResources 15(3), 5503–5513. DOI: 10.15376/biores.15.3.5503-5513.
  • 35. THOEMEN H. and HUMPHREY P. E. 2006. Modeling the Physical Processes Relevant during Hot Pressing of Wood-Based Composites. Part I. Heat and Mass Transfer. Holz als Roh- und Werkstoff 64 (1): 1–10. https://doi.org/10.1007/s00107-005-0027-2.
  • 36. THOEMEN H., IRLE M., SERNEK M. 2010. Wood-Based Panels An Introduction for Specialists, Brunei University Press London UB 3PH. England
  • 37. TOLVIK CONSULTING 2018. UK Dedicated Biomass Statistics – 2017.”file://plorl-nt0002/Users_Profiles/salcon/Documents/Doktorat/Bibliografia/Tolvik-UK-Biomass-Statistics-2017-2.pdf.
  • 38. TRECHSEL H. R., BOMBERG M. T., CARLL C., WIEDENHOEFT A. C. 2010. “Moisture-Related Properties of Wood and the Effects of Moisture on Wood and Wood Products.” Moisture Control in Buildings: The Key Factor in Mold Prevention–2nd Edition, 54–54–26. https://doi.org/10.1520/mnl11544m.
  • 39. WAN H., WANG X. M., BARRY A. and SHEN J. 2014. Recycling Wood Composite Panels: Characterizing Recycled Materials. BioResources 9 (4): 7554–65. https://doi.org/10.15376/biores.9.4.7554-7565.
  • 40. WANG S., WINISTORFER P. M., YOUNG T. M., HELTON C. 2001. Step-Closing Pressing of Medium Density Fiberboard; Part 1. Influences on the Vertical Density Profile. Holz als Roh- und Werkstoff 59 (1–2): 19–26. https://doi.org/10.1007/s001070050466.
  • 41. WINANDY J. E., KAMKE F., EDS A. 2004. Fundamentals of Composite Precessing Proceedings of a Workshop. Madison, WI. Gen. Tech. Rep. FPL-GTR-149. Madison, WI: U.S. Depart ment of Agriculture, Forest Service, Forest Products Laboratory.
  • 42. WINANDY J. E, and KRZYSIK A. M. 2007. Thermal degradation of wood fibers during hot-pressing of MDF composites: PART I. Relative effects and benefits of thermal exposure, Wood and Fiber Science 39 (3): 450–461.
  • 43. WONG E. D., ZHANG M., WANG Q., HAN G., KAWAI S. 2000. Formation of the Density Profile and Its Effects on the Properties of Fiberboard. Journal of Wood Science 46 (3): 202–9. https://doi.org/10.1007/BF00776450.
  • 44. WU Q. and SUCHSLAND O. 1997. Effect of Moisture on the Flexural Properties of Commercial Oriented Strandboards. Wood and Fiber Science 29 (1): 47–57.
  • 45. www.Drewno.Pl/Artykuly/10837,Rekordowo-Wysokie-Ceny-Za-Drewno-w-i-Kwartale-2017.Html. Accessed March 2020.
  • 46. www.imalpal.com/en/impianto.php?pr=85&cat=2&zona=5. Accessed March 2020.
  • 47. www.poranny.pl/koszki-fabryka-ikea-premier-w-wytworni-plyt-hdf-zaklad-jak-kosmiczne-centrum-zdjecia/ar/c3-5382674. Accessed February 2020.
  • 48. ZHENG Y. W., ZHU L. B., GU J. Y. G., ZHENG Z. F., HUANG Y. B. 2011. Study on the Curing Characteristics of MUF Co-Polymerization Resin. Advanced Materials Research 183–185: 2124–28.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f9b40d1-9eab-4f92-b589-e67c93227484
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.