Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Kaolin deposits, situated ~10 km north-west of Gonabad (eastern Iran), formed by the intrusion of hydrothermal fluids from a granite dyke in the western part of the study area, and the alteration of rhyolite, dacite and rhyodacite related to Eocene volcanism. There are four major kaolin quarries. The rocks in the investigated area are mainly slate, dacite, rhyolite, andesite-trachyandesite, and lithic and felsic tuffs. The mineralogical compositions of the kaolin deposits are dominated by quartz, kaolinite, dickite and illite with minor chlorite, montmorillonite, albite, hematite, pyrite and gypsum. Sanidine and plagioclase crystals in rhyolite-rhyodacite are sericitized and kaolinized. Whole rock chemistry of the kaolin deposits shows high contents of SiO2 and Al2O3. Enrichments of Sr in some samples demonstrate retention of Sr and depletion of Rb, Ba, Ca and K during hydrothermal alteration of sanidine and plagioclase within the volcanic units. The chondrite-normalized rare earth element patterns of the clay deposits show LREE enrichments (La/Lu)cn = 6.75 to 57.74, pointing to kaolinization in low-pH waters. The isotope composition of the kaolin (δ18O ~+5‰) is consistent with formation at isotopic equilibrium with water of hydrothermal/magmatic origin. The mineralogical composition, REE contents and elemental ratios in these deposits suggest provenance of the kaolin deposits mainly from felsic rocks and hydrothermal fluids. The O isotopic character also supports these results.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
385--399
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
- University of Gonabad, Faculty of Science, Geology Department, Iran
autor
- University of Aveiro, Geobiotec Research Unit, Department of Geosciences, 3810-193 Aveiro, Portugal
autor
- University of Gonabad, Faculty of Science, Geology Department, Iran
Bibliografia
- 1. Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. GSA Bulletin, 103: 983-992.
- 2. Anders, E., Grevesse, N., 1989. Abundances of the elements: meteoric and solar. Geochimica et Cosmochimica Acta, 53: 197-214.
- 3. Arribas, A. Jr., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., Podwysocki, M.H., McKee, E.H., Tosdal, R.M., 1995. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold-alunite deposit, Spain. Economic Geology, 90: 795-822.
- 4. Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93: 219-230.
- 5. Berberian, M., 1981. Towards a paleogeography and tectonic evaluation of Iran. Canadian Journal of Earth Sciences, 18: 210-265.
- 6. Berberian, M., Jackson, J.A., Qorashi, M., Khatib, M.M., Priestley, K., Talebian, M., Ghafuri-Ashtiani, M., 1999. The 1997 may 10 Zirkuh (Qaenat) earthquake (Mw 7.2): faulting along the Sistan suture zone of eastern Iran. Geophysical Journal International, 136: 671-694.
- 7. Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, A., Guillet, B., 1990. Cerium anomalies in lateritic prfiles. Geochemica et Cosmochemica Acta, 54: 781-795.
- 8. Camp, V., Griffis, R., 1982. Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran. Lithos, 15: 221-239.
- 9. Chamley, H., 1989. Clay Sedimentology. Springer, New York.
- 10. Christidis, G., Scott, P.W., Marcopoulast, T., 1995. Origin of the bentonite deposits of Eastern Milos and Kimalos, Greece: geological, mineralogical and geochemical evidence. Clays and Clay Minerals, 43: 63-77.
- 11. Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133: 1702-1703.
- 12. Class, C., la Roex, A.P., 2008. Ce anomalies in Gough Island lavas-trace element characteristics of a recycled sediment component. Earth and Planetary Science Letters, 265: 475-486.
- 13. Felhi, M., Tlili, A., Gaied, M.E., Montacer, M., 2008. Mineralogical study of kaolinitic clays from Sidi El Bader in the far North of Tunisia. Applied Clay Science, 39: 208-217.
- 14. Fournier, R.O., 1985. The behavior of silica in hydrothermal systems. Reviews in Economic Geology, 2: 45-62.
- 15. Galhano, C., Rocha, F., Gomes, C., 1999. Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behavior of the “Clays Aveiro” formation (Portugal). Clay Minerals, 34: 109-116.
- 16. Gharibnavaz, A., Ebrahimi, K.H., Mazaheri, S.A., Yoosefi, A., Mahmoudi Gharaee, M.H., 2007. The industrial mineralogy and geochemistry of REE Gonabad, Ahooee and Rhokh-sefid kaolinite deposits. 15th Symposium of Iranian Society of Crystallography and Mineralogy, Ferdowsi University of Mashhad, Iran: 513-520.
- 17. Ghaemi, F., 2005. Geological map of Gonabad, 1:100,000 scale. Geological Survey of Iran.
- 18. Hayba, D.O., Bethke, P.M., Heald, P., Foley, N.K., 1985. Geologic, mineralogic and geochemical characteristics of volcanic-hosted epithermal precious metal deposits. Reviews in Economic Geology, 2: 129-167.
- 19. Haskin, L.A., Wildman, T.R., Haskin, M.A., 1968. An accurate procedure for the determination of the rare earths by neutron activation. Journal of Radioanalytical and Nuclear Chemistry, 1: 337-348.
- 20. Hemley, J.J., Hostetler, P.B., Gude, A.J., Mountjoy, W.T., 1969. Some stability relations of alunite. Economic Geology, 64: 599-612.
- 21. Hoefs, J., 2004. Stable Isotope Geochemistry. Springer, Berlin.
- 22. Kadir, S., Karakaş, Z., 2002. Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues Jahrbuch für Mineralogie Abhandlungen, 177: 113-132.
- 23. Kadir, S., Erman, H., Erkoyun, H., 2011. Mineralogical and geochemical characteristics and genesis of hydrothermal kaolinite deposits within Neogenevolcanites, Kütahya (western Anatolia), Turkey. Clays and Clay Minerals, 59: 250-276.
- 24. Karakaya, N., 2009. REE and HFS element behaviour in the alteration facies of the Erenler Dag Volcanics (Konya, Turkey) and kaolinite occurrence. Journal of Geochemical Exploration, 101: 185-208.
- 25. Karimpour, M.H., Saadat, S., 2005. Report of kaolin deposits in eastern Iran. Research and Exploration Centerfor Ore Deposits of Eastern Iran, Mashhad.
- 26. Kruse, F.A., Lefkoff, A.B., Boardman, J.B., Heidebreicht, H.K.B., Shapiro, A.T., Barloon, P.J., Goetz, A.F.H., 1993. The Spectral Image Processing System (SIPS) - interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44: 145-163.
- 27. Lackschewitz, K.S., Singer, A., Botz, R., Garbe-Schonberg, D., Stoffers, P., 2000. Mineralogy and geochemistry of clay minerals near a hydrothermal site in the Escanaba trough, Gorda Ridge, Northeast Pacific Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 169: 1-24.
- 28. Martins, V., Dubert, J., Jouanneau, J.-M., Weber, O., Silva, E.F., Patinha, C., Dias, J.M.A., Rocha, F., 2007. A multiproxy approach of the Holocene evolution of shelf - slope circulation on the NW Iberian Continental Shelf. Marine Geology, 239: 1-18.
- 29. Mellinger, R.M., 1979. Quantitative X-ray diffraction analysis of clay minerals. An evaluation. Saskatchenwan Research Council, Canada, SRC Report, G-79: 1-46.
- 30. Meunier, A., 1995. Hydrothermal alteration by veins. In: Origin and Mineralogy of Clays: Clay and the Environment (ed. B. Velde): 247-267. Springer, Berlin.
- 31. Miranvari, A., Ebrahimi, K.H., Homam, M., 2007. The mineralogy, chemistry and industrial application of Yasmina kaolininite clay. 11th Symposium of Iranian Society of Geology: 602-606.
- 32. Miranvari, A., 2008. Industrial mineralogy of Yasmina Kaolin deposit, Gonabad (in Persian). M.Sc. thesis, Ferdowsi university of Mashhad.
- 33. Miri Bidokhti, R., 2004. Mineralogical and geochemical study of kaolin deposits of Baghsiah, Rokhsefid and Kabutarkuh (in Persian). M.Sc. thesis, University of Shiraz.
- 34. Montoya, J.W., Hemley, J.J., 1975. Activity and relations and stabilities in alkali feldspar and mica alteration reactions. Economic Geology, 70: 577-594.
- 35. Murray, H.H., Janssen, J., 1984. Oxygen isotopes: indicators of kaolin genesis? 27th International Congress Non-Metallic Mineral Ores, 15: 287-303.
- 36. Murray, H.H., Keller, W.D., 1993. Kaolins, kaolins and kaolins. In: Kaolin Genesis and Utilization (eds. H.H. Murray, W. Bundy and C. Harvey): 1-24. The Clay Mineral Society, Boulder, Colorado.
- 37. Nesbitt, H.W., Young, G.M., 1982. Early Paleozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 229: 715-717.
- 38. Nesbitt, H.W., Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48: 1523-1534.
- 39. Nyakairu, G.W.A., Koebrel, C., Kurzweil, H., 2001. The Buwambo kaolin deposit in central Uganda: mineralogical and chemical composition. Geochemical Journal, 35: 245-256.
- 40. Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O., Gomes, C., 2002. Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Progress in Oceanography, 52: 233-247.
- 41. Roedder, E., 1984. Fluid inclusions. Mineralogical Society of America, Reviews in Mineralogy, 12.
- 42. Savin, S.M., Epstein, S., 1970. The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Acta, 34: 25-42.
- 43. Savin, S.M., Hsieh, J.C.C., 1998. The hydrogen and oxygen isotope geochemistry of pedogenic clay minerals: principles and theoretical background. Geoderma, 82: 227-253.
- 44. Schultz, L.G., 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geological Survey Professional Paper, 39: 1-31.
- 45. Sharp, Z.D., 1990. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides. Geochimica et Cosmochimica Acta, 54: 1353-1357.
- 46. Sheppard, S.M.F., Gilg, H.A., 1996. Stable isotope geochemistry of clay minerals. Clay Minerals, 31: 1-24.
- 47. Sillitoe, R.H., 1993. Epithermal models: genetic types, geothermal controls and shallow features. Geological Association of Canada Special Paper, 40: 403-417.
- 48. Stocklin, J., Nabavi, M.H., 1973. Tectonic Map of Iran. Geological Survey of Iran.
- 49. Stoffregen, R., 1987. Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Economic Geology, 82: 1575-1591.
- 50. Taylor, H.P., 1979. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes): 229-302. John Wiley, New York.
- 51. Thorez, J., 1976. Practical Identification of Clay Minerals: a Handbook for Teachers and Students in Clay Mineralogy. Belgium State University Press, Dison, Lelotte.
- 52. Tirrul, R., Bell, I.R., Griffis, R.J., Camp, V.E., 1983. The Sistan suture zone of eastern Iran. GSA Bulletin, 94: 134-150.
- 53. Weaver, C.E., 1989. Clays, Muds, and Shales. Developments in Sedimentology, 44, Elsevier, Amsterdam.
- 54. Whitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95: 185–187.
- 55. Zirjanizadeh, S., Karimpour, M.H., Ebrahimi Nasrabadi, Kh., 2011. Review of mineralization potential of Northwest Gonabad. 2th Symposium of Society of Economic Geology of Iran: 138-139.
- 56. Zirjanizadeh, S., Karimpour, M.H., Ebrahimi Nasrabadi, Kh., 2013. Geochemistry and Petrology of the volcanic rocks, North West Gonabad. 7th symposium of Iranian Society of Geology: 639-644.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f9aa8c7-15be-48ee-87a2-599a1b14bdb8