PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

In-Situ Observation of Acicular Ferrite Transformation in High-Strength Low-Alloy Steel Using Confocal Laser Scanning Microscopy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In-situ observation of the transformation behavior of acicular ferrite in high-strength low-alloy steel using confocal laser scanning microscopy was discussed in terms of nucleation and growth. It is found that acicular ferrite nucleated at dislocations and slip bands in deformed austenite grains introduced by hot deformation in the non-recrystallization austenite region, and then proceeded to grow into an austenite grain boundary. According to an ex-situ EBSD analysis, acicular ferrite had an irregular shape morphology, finer grains with sub-grain boundaries, and higher strain values than those of polygonal ferrite. The fraction of acicular ferrite was affected by the deformation condition and increased with increasing the amount of hot deformation in the non-recrystallization austenite region.
Twórcy
autor
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  • Korea University, Department of Materials Science and Engineering, Seoul, 02841, Republic of Korea
autor
  • Korea University, Department of Materials Science and Engineering, Seoul, 02841, Republic of Korea
autor
  • Korea University, Department of Materials Science and Engineering, Seoul, 02841, Republic of Korea
  • Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Bibliografia
  • [1] Y.E. Smith, A.P. Coldren, R.L. Cryderman, Climax Molybdenum Company Ltd., Toward Improved Ductility and Toughness, pp. 119-142,Tokyo 1972.
  • [2] C.H. Lee, H.K.D.H. Bhadeshia, H.C. Lee, Mater. Sci. Eng. A 360, 249 (2003).
  • [3] A.F. Gourgues, H.M. Flower, T.C. Lindley, Mater. Sci. Technol. 16, 26 (2000).
  • [4] H.K.D.H. Bhadeshia, The Institute of Materials, Bainite in Steels (Transformations, Microstructure, and Properties), London 2001.
  • [5] N. Amirijani, M. Ketabchi, M. Eskandari, M. Hizombor, Met. Mater. Int. 27, 4802 (2021).
  • [6] Y.J. Oh, S.Y. Lee, J.S. Byun, Mater. Trans. JIM 41, 1663 (2000).
  • [7] M. Díaz-Fuentes, A. Iza-Mendia, I. Gutiérrez, Metall. Mater. Trans. A, 34, 2505 (2003).
  • [8] L.R. Jacobo, R. García-Hernández, V.H. López-Morelos, A. Contreras, Met. Mater. Int. 27, 3750 (2021).
  • [9] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334 (2019).
  • [10] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A, 711, 22 (2018).
  • [11] K. Seo, K.H. Kim, H.J. Kim, H. Ryoo, G.M. Evans, C. Lee, Met. Mater. Int. 26, 1226 (2020).
  • [12] H. Zhao, E.J. Palmiere, Mater. Charact. 145, 497 (2018).
  • [13] Y.M. Kim, H. Lee, N.J. Kim, Mater. Sci. Eng. A 478, 361 (2008).
  • [14] F. Xiao, B. Liao, D. Ren, Y. Shan, K. Yang, Mater. Charact. 54, 305 (2005).
  • [15] T. Araki, Atlas for Bainitic Microstructures, ISIJ, Tokyo 1992, pp. 1-100.
  • [16] P. Korczak, H. Dyja, J.W. Pilarczyk, Met. Mater. Int. 4, 707 (1998).
  • [17] M.C. Zhao, K. Yang, F.R. Xiao, Y.Y. Shan, Mater. Sci. Eng. A, 355, 126 (2003).
  • [18] Y.M. Kim, S.K. Kim, Y.J. Lim, N.J. Kim, ISIJ Int. 42, 1571 (2002).
  • [19] S.W. Thompson, D.J. Colvin, G. Krauss, Scr. Metall. 22, 1069 (1988).
  • [20] S. Wu, C. Zhang, L. Zhu, Q. Zhang, X. Ma, Scr. Mater. 185, 61 (2020).
  • [21] J. Tian, G. Xu, Z. Jiang, H. Hu, Q. Yuan, X. Wan, Met. Mater. Int. 26, 961 (2020).
  • [22] I. Sohn, R. Dippenaar, Metall. Mater. Trans. B 47, 2083 (2016).
  • [23] Y. Shen, B. Chen, C. Wang, Metall. Mater. Trans. A 51, 3371 (2020).
  • [24] S. Clark, V. Janik, A. Rijkenberg, S. Sridhar, Mater. Charact. 115, 83 (2016).
  • [25] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221 (2018)
  • [26] C.S. Li, Z.X. Li, J.Y. Ren, X.Y. Tu, B.Z. Li, Steel Res. Int. 90, 1800470 (2019).
  • [27] Q. Luo, H. Chen, W. Chen, C. Wang, W. Xu. Q. Li, Scr. Mater. 187, 413 (2020).
  • [28] S.W. Ko, H.W. Park, I. Yoo, H. Kim, J. Lee, B. Hwang, Arch. Metall. Mater. 66, 1019 (2021).
  • [29] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758, 56 (2019).
  • [30] S.I. Lee, B. Hwang, J. Iron Steel Res. Int. 27, 319 (2020).
  • [31] J.S. Kang, J.B. Seol, C.G. Park, Mater. Charact. 79, 110 (2013)
Uwagi
1. This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f9a81c7-0b3c-4ef6-8917-af0497dd1dfd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.