PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of the FKT system with different mooring lines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To harness the endless hydrokinetic energy of the Kuroshio current, the joint research team of the National Taiwan University and the National Taiwan Ocean University has developed a floating Kuroshio turbine (FKT) system in Taiwan. In normal operation, the system floats at a certain small depth from the ocean surface to reduce the wave effects and take advantage of faster current speeds. In the present study, the effect of the mooring line on the system dynamics is investigated computationally. Two different auxiliary mooring line designs and, for each design, three different common mooring lines (polyester ropes of neutral buoyancy, iron chains, and 6×19 wires ropes with wire core) are examined. The study makes use of several commercial and in-house packages, integrated to find various coefficients. It is found that the mooring line, the auxiliary mooring line design, and the gravity centre can have a significant effect on system fluctuations in normal operation if the combination of these factors is not properly matched.
Rocznik
Tom
Strony
20--29
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • National Taiwan Ocean University 2 Pei-ning Road, 20224 Keelung Taiwan
  • National Taiwan Ocean University 2 Pei-ning Road, 20224 Keelung Taiwan
  • National Taiwan Ocean University 2 Pei-ning Road, 20224 Keelung Taiwan
  • National Taiwan University, Taipei, Taiwan
Bibliografia
  • 1. N.S. Diffenbaugh, D. Singh, and J.S. Mankin, Unprecedented climate events: Historical changes, aspirational targets, and national commitments, Sci. Advances, Vol. 4, eaao 3354, 2018.
  • 2. H. Jeffrey, B. Jay, and M. Winskel, Accelerating the development of marine energy: Exploring the prospects, benefits and challenges, Technol. Forecast. Soc. Change, Vol. 80, pp. 1306–1316, 2013.
  • 3. J. Van Zwieten, F.R. Driscoll, A. Leonessa, and G. Deane, “Design of a prototype ocean current turbine---Part I: mathematical modeling and dynamics simulation, Ocean Eng., Vol. 33, pp. 1485–1521, 2006.
  • 4. F. Chen, The Kuroshio Power Plant, Switzerland: Springer, 2013.
  • 5. IHI Corporation, Power generation using the Kuroshio Current, IHI Eng. Review, Vol. 46, pp. 2–5, 2014.
  • 6. J.-Y. Bai, Ocean current power generation project, Workshop on Development of Marine Mechanical Energy Industry in Taiwan, Keelung, Taiwan, 2012 (in Chinese).
  • 7. A. Røkke and R. Nilssen, Marine current turbines and generator preference: A technology review, Int. Conf. Renew. Energies Power Quality, Bilbao, Spain, 2013.
  • 8. Y. Kyozuka, Tidal and ocean current power generation, J. Smart Processing, Vol. 3, pp. 137–145, 2014.
  • 9. A.R. Cribbs, Model analysis of a mooring system for an ocean current turbine testing platform, M.S. thesis, Florida Atlantic University, Boca Raton, Florida, USA, Dec. 2010.
  • 10. A.R. Cribbs and J.H. Van Zwieten, “Global numerical analysis of a moored ocean current turbine testing platform,” Oceans, Seattle, OR, USA, 2010.
  • 11. M. Shibata, K. Takeda, and K. Takgai, Mooring and power cable system for current-turbine, Oceans, San Diego, CA, USA, 2013.
  • 12. K. Takagi, T. Waseda, S. Nagaya, Y. Niizeki, and Y. Oda, Development of a floating current turbine, Oceans, Hampton Roads, VA, USA, 2012.
  • 13. Y.-H. Rho, C.-H. Jo, and D.-Y. Kim, Optimization of mooring system for multi-arrayed tidal turbines in a strong current area, Proc. ASME 33rd Int. Conf. Ocean, Offshore and Arctic Eng., San Francisco, CA, USA, 2014.
  • 14. C.C. Tsao and A.H. Feng, Motion Model and Speed Control of the Cross-Stream Active Mooring System for Tracking Short-Term Meandering to Maximize Ocean Current Power Generation, J. Mech., 1–15, 2017.
  • 15. K. Shirasawa, J. Minami, and T. Shintake, Scale-model experiments for the surface wave influence on a submerged floating ocean-current turbine, Energies, Vol. 10, 702, 2017.
  • 16. J.-T. Wu, J.-H. Chen, C.-Y. Hsin, and F.-C. Chiu, A computational study on system dynamics of an ocean current turbine, J. Hydrodyn., accepted, 2018.
  • 17. A.R. Cribbs, G.R. Karrsten, J.T. Shelton, R.S. Nicoll, and W.P. Stewart, Mooring system considerations for renewable energy standards, Offshore Technology Conf., Houston, TX, USA, 2017.
  • 18. A.E.D. Bowie, Flexible moorings for tidal current turbines, M.S. thesis, University of Strathclyde, Glasgow, UK, Sep. 2012.
  • 19. C.H. Jo, D.Y. Kim, B.K. Cho, and M.J. Kim, Mooring analysis of duct-type tidal current power system in shallow water, Int. J. Geol. Environ. Eng., Vol. 10, pp. 577–582, 2016.
  • 20. D.W. Atkins, The CFD assisted design and experimental testing of a wingsail with high lift devices, Ph.D. dissertation, University of Salford, Salford, UK, 1996.
  • 21. H.Y. Lo, Dynamic analysis of current turbine system, M.S. thesis, National Taiwan Ocean University, Keelung, Taiwan, 2017 (in Chinese).
  • 22. OrcaFlex Manual, Ver. 9.5a, Orcina Ltd., Cumbria, UK, 2011.
  • 23. J.-T. Wu, J.-H. Chen, C.-Y. Hsin, and F.-C. Chiu, A computational study on system dynamics of an ocean current turbine, J. Hydrodyn., Vol. 30, pp. 395–402, 2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f96cb4f-9cd3-42ff-89ea-5c6eddc686db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.