PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineralization and degradation of poly(ε -caprolactone) / hydroxyapatite electrospun membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to study mineralization and degradation behavior of poly(ε-caprolactone) membranes modified with hydroxyapatite. The membranes have been obtained by electrospinning method. In vitro mineralization and degradation processes were carried out in simulated body fluid (SBF) as the release medium. The weight loss of the samples, water uptakes, pH and calcium, potassium, sodium ions concentrations of the solutions were determined. The chemistry and microstructure of the membranes after different times of incubation in SBF were characterized using SEM, FTIR, and XRD methods. The results of in vitro study in SBF indicate that incorporation of n-HAp strongly activates precipitation of the apatite like materials on the surface of nanofibers.
Rocznik
Strony
5--9
Opis fizyczny
Bibliogr. 17 poz., tab., wykr., zdj.
Twórcy
autor
  • ATH, University of Bielsko-Biała, Faculty of Materials and Environmental Sciences, Institute of Textile Engineering and Polymer Materials Willowa 2, 43-309 Bielsko-Biała
  • ATH, University of Bielsko-Biała, Faculty of Materials and Environmental Sciences, Institute of Textile Engineering and Polymer Materials Willowa 2, 43-309 Bielsko-Biała
autor
  • ATH, University of Bielsko-Biała, Faculty of Materials and Environmental Sciences, Institute of Textile Engineering and Polymer Materials Willowa 2, 43-309 Bielsko-Biała
autor
  • ATH, University of Bielsko-Biała, Faculty of Materials and Environmental Sciences, Institute of Textile Engineering and Polymer Materials Willowa 2, 43-309 Bielsko-Biała
Bibliografia
  • [1] Jang J.H., Castano O., Kim H.W., Electrospun materials as potential platforms for bone tissue engineering, Advenced Drug Delivery Reviews 61 (2009) 1065-1083.
  • [2] Sill T.J., Von Recum H.A., Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29 (2008) 1989-2006.
  • [3] Rajzer I., Biniaś W., Fabia J., Biniaś D., Janicki J., Electrospinning: carbon nanofibers from polyacrylonitrile modified by nanohydroxyapatite. Study of stabilization process. Engineering of Biomaterials 86 (2009) 22-27.
  • [4] Kim H.M., Himeno T., Kokubo T., Nakamura T., Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in simulated body fluid. Biomaterials 26 (2005) 4366-4373.
  • [5] Davies J.E., Bone bonding at natural and biomaterial surfaces. Biomaterials 28 (2007) 5058-5067.
  • [6] Kanjwal M.A., Sheikh F.A., Nirmala R., Macossay J., Kim H.Y., Fabrication of poly(caprolactone) nanofibers containing hydroxyapatite nanoparticles and their mineralization in a simulated body fluid. Fibers and Polymers 12(1) (2011) 50-56.
  • [7] Lebourg M., Suay Anton J., Gomez Ribelles J.L., Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. Journal of Materials Science 21 (2010) 33-44.
  • [8] Mavis B., Demirtas T.T., Gumusderelioglu M., Gunduz G., Colak U., Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomaterialia 5(8) (2009) 3098-3111.
  • [9] Lei Y., Rai B., Ho K.H., Teoh S.H., In vitro degradation of novel bioactive polycaprolactone - 20% tricalcium phosphate composite scaffolds for bone engineering. Materials Science and Engineering C 27 (2007) 293-298.
  • [10] Nirmala R., Nam K.T., Park D.K., Woo-il B., Navamathavan R., Kim H.Y., Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly(ε-caprolactone) nanofibers via electrospinning. Surface & Coatings Technology 205 (2010) 174-181.
  • [11] Rajzer I., Evaluation of PCL and PCL/HAp scaffolds processed by electrospinning and porogen leaching techniques. Engineering of Biomaterials 103 (2011) 4-7.
  • [12] Fabbri P., Bondioli F., Messori M., Bartoli C., Dinucci D., Chiellini F., Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering. Journal of Materials Science: Materials in Medicine 21 (2010) 343-351.
  • [13] Navarro M., Ginebra M.P., Planell J.A., Barrias C.C., Barbosa M.A., In vitro degradation behaviour of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomaterialia 1 (2005) 411-419.
  • [14] Pena J., Corrales T., Izquierdo-Barba I., Doadrio A.L., Regi M.V., Long term degradation of poly(ε-caprolactone) films in biologically related fluids. Polymer Degradation and Stability 91 (2006) 1424-1432.
  • [15] Guarino V., Lewandowska M., Bil M., Polak B., Ambrosio L., Morphology and degradation properties of PCL/HYAFF11 composite scaffolds with multi-scale degradation rate. Composite Science and Technology 70 (2010) 1826-1837.
  • [16] Kokubo T. et al., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15) (2006) 2907-2915.
  • [17] Barrere F., Mahmood T.A., de Groot K., van Blitterswijk C.A., Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Materials Science and Engineering R 59 (2008) 38-71.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f94d9e4-99ce-4bc5-a6c4-80001b9e7531
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.