PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Saturating stiffness control of robot manipulators with bounded inputs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A saturating stiffness control scheme for robot manipulators with bounded torque inputs is proposed. The control law is assumed to be a PD-type controller, and the corresponding Lyapunov stability analysis of the closed-loop equilibrium point is presented. The interaction between the robot manipulator and the environment is modeled as spring-like contact forces. The proper behavior of the closed-loop system is validated using a three degree-of-freedom robotic arm.
Rocznik
Strony
79--90
Opis fizyczny
Bibliogr. 39 poz., wykr.
Twórcy
  • CONACYT—Ensenada Institute of Technology, Boulevard Tecnológico No. 150, Col. Ex Ejido Chapultepec, Ensenada, Baja California, 22780 Mexico
autor
  • Faculty of Sciences, Autonomous University of San Luis Potosí, Av. Salvador Nava S/N, San Luis Potosí, SLP, 78290 Mexico
autor
  • Faculty of Sciences, Autonomous University of San Luis Potosí, Av. Salvador Nava S/N, San Luis Potosí, SLP, 78290 Mexico
  • Robotics Engineering Department, Autonomous University of Aguascalientes, Prol. Mahatma Gandhi 6601, Aguascalientes, Ags., 20392 Mexico
Bibliografia
  • [1] Aguiñaga-Ruiz, E., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2009). Global trajectory tracking through static feedback for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 17(4): 934–944.
  • [2] Akdoğan, E. and Adli, M.A. (2011). The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot, Mechatronics 21(3): 509–522.
  • [3] Belter, D., Łabecki, P., Fankhauser, P. and Siegwart, R. (2016). RGB-D terrain perception and dense mapping for legged robots, International Journal of Applied Mathematics and Computer Science 26(1): 81–97, DOI: 10.1515/amcs-2016-0006.
  • [4] Canudas, C., Siciliano, B. and Bastin, G. (2012). Theory of Robot Control, Springer-Verlag, London.
  • [5] Caverly, R.J., Zlotnik, D.E., Bridgeman, L.J. and Forbes, J.R. (2014). Saturated proportional derivative control of flexible-joint manipulators, Robotics and Computer-Integrated Manufacturing 30(6): 658–666.
  • [6] Caverly, R.J., Zlotnik, D.E. and Forbes, J.R. (2016). Saturated control of flexible-joint manipulators using a Hammerstein strictly positive real compensator, Robotica 34(06): 1367–1382.
  • [7] Chávez-Olivares, C., Reyes, F. and González-Galván, E. (2015). On stiffness regulators with dissipative injection for robot manipulators, International Journal of Advanced Robotic Systems 12(65): 1–15.
  • [8] Chávez-Olivares, C., Reyes, F., González-Galván, E., Mendoza, M. and Bonilla, I. (2012). Experimental evaluation of parameter identification schemes on an anthropomorphic direct drive robot, International Journal of Advanced Robotic Systems 9(203): 1–18.
  • [9] Dario, P., Guglielmelli, E. and Allotta, B. (1994). Robotics in medicine, IEEE/RSJ/GI International Conference on Intelligent Robots and Systems: Advanced Robotic Systems and the Real World, IROS’94, Munich, Germany, Vol. 2, pp. 739–752.
  • [10] Dehghani, S., Taghirad, H. and Darainy,M. (2010). Self-tunning dynamic impedance control for human arm motion, 7th Iranian Conference of Biomedical Engineering (ICBME), Isfahan, Iran, pp. 1–5.
  • [11] Deneve, A., Moughamir, S., Afilal, L. and Zaytoon, J. (2008). Control system design of a 3-DOF upper limbs rehabilitation robot, Computer Methods and Programs in Biomedicine 89(2): 202–214.
  • [12] Djebrani, S., Benali, A. and Abdessemed, F. (2012). Modelling and control of an omnidirectional mobile manipulator, International Journal of Applied Mathematics and Computer Science 22(3): 601–616, DOI: 10.2478/v10006-012-0046-1.
  • [13] Dulęba, I. and Opałka, M. (2013). A comparison of Jacobian-based methods of inverse kinematics for serial robot manipulators, International Journal of Applied Mathematics and Computer Science 23(2): 373–382, DOI: 10.2478/amcs-2013-0028.
  • [14] Falaki, A. and Towhidkhah, F. (2012). Supervisory model predictive impedance control for human arm movement, 20th Iranian Conference on Electrical Engineering, Tehran, Iran, pp. 1562–1566.
  • [15] He, W., Dong, Y. and Sun, C. (2016). Adaptive neural impedance control of a robotic manipulator with input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(3): 334–344.
  • [16] Hogan, N. (1985). Impedance control: An approach to manipulation. I: Theory, II: Implementation, III: Applications, ASME Journal of Dynamic Systems, Measurement and Control 107(1): 1–24.
  • [17] Ju, M.S., Lin, C.C.K., Lin, D.H., Hwang, I.S. and Chen, S.M. (2005). A rehabilitation robot with force-position hybrid fuzzy controller: Hybrid fuzzy control of rehabilitation robot, IEEE Transactions on Neural Systems & Rehabilitation Engineering 13(3): 349–358.
  • [18] Kelly, R., Santibáñez, V. and Berghuis, H. (1997). Point-to-point robot control under actuator constraints, Control Engineering Practice 5(11): 1555–1562.
  • [19] Kelly, R., Santibáñez, V. and Loría, A. (2005). Control of Robot Manipulators in Joint Space, Springer-Verlag, London.
  • [20] Khalil, H. (2002). Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ.
  • [21] Kiguchi, K., Imada, Y. and Liyanaje, M. (2007). EMG-based neuro-fuzzy control of a 4-DOF upper-limb power-assist exoskeleton, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, pp. 3040–3043.
  • [22] Kurfess, T. (2004). Robotics and Automation Handbook, CRC Press, Boca Raton, FL.
  • [23] Li, Y., Ge, S.S., Yang, C., Li, X. and Tee, K.P. (2011). Model-free impedance control for safe human–robot interaction, 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 6021–6026.
  • [24] López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013a). A generalized scheme for the global adaptive regulation of robot manipulators with bounded inputs, Robotica 31(7): 1103–1117.
  • [25] López-Araujo, D.J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2013b). Output-feedback adaptive control for the global regulation of robot manipulators with bounded inputs, International Journal of Control, Automation, and Systems 11(1): 105–115.
  • [26] López-Araujo, D. J., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015). A generalized global adaptive tracking control scheme for robot manipulators with bounded inputs, International Journal of Adaptive Control and Signal Processing 29(2): 180–200.
  • [27] Mendoza, M., Bonilla, I., Reyes, F. and González-Galván, E. (2012). A Lyapunov-based design tool of impedance controllers for robot manipulators, Kybernetika 48(6): 1136–1155.
  • [28] Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015a). A generalised PID-type control scheme with simple for the global regulation of robot manipulators with tuning constrained inputs, International Journal of Control 88(10): 1995–2012.
  • [29] Mendoza, M., Zavala-Río, A., Santibáñez, V. and Reyes, F. (2015b). Output-feedback proportional-integral-derivative-type control with simple tuning for the global regulation of robot manipulators with input constraints, IET Control Theory and Applications 9(14): 2097–2106.
  • [30] Modares, H., Ranatunga, I., Lewis, F.L. and Popa, D.O. (2016). Optimized assistive human–robot interaction using reinforcement learning, IEEE Transactions on Cybernetics 46(3): 655–667.
  • [31] Santibáñez, V. and Kelly, R. (1996). Global regulation for robot manipulators under SP-SD feedback, 1996 IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, MN, USA, pp. 927–932.
  • [32] Santibáñez, V., Kelly, R. and Reyes, F. (1998). A new set-point controller with bounded torques for robot manipulators, IEEE Transactions on Industrial Electronics 45(1): 126–133.
  • [33] Siciliano, B. and Villani, L. (2012). Robot Force Control, Springer-Verlag, London.
  • [34] Spong, M., Hutchinson, S. and Vidyasagar, M. (2005). Robot Modeling and Control, Wiley, New York, NY.
  • [35] Volpe, R. and Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators, IEEE Transactions on Automatic Control 38(11): 1634–1650.
  • [36] Xu, G., Song, A. and Li, H. (2011). Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network, Journal of Intelligent & Robotic Systems 62(3): 501–525.
  • [37] Yarza, A., Santibanez, V. and Moreno-Valenzuela, J. (2013). An adaptive output feedback motion tracking controller for robot manipulators: Uniform global asymptotic stability and experimentation, International Journal of Applied Mathematics and Computer Science 23(3): 599–611, DOI: 10.2478/amcs-2013-0045.
  • [38] Zavala-Río, A. and Santibáñez, V. (2006). Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Control Systems Technology 14(5): 958–965.
  • [39] Zavala-Río, A. and Santibáñez, V. (2007). A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs, IEEE Transactions on Robotics 23(2): 386–391.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f90dddf-e86e-4d76-a7f7-d914c5203f15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.