PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

LCD panels bioleaching with pure and mixed culture of Acidithiobacillus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of pure and mixed culture of A. ferrooxidans and A. tiooxidans as well as different pulp density (1 and 2%) of LCD panels on the In and Sn bioleaching efficiency was investigated. Pulp density is one of the factors affecting the metals extraction efficiency during biological leaching. It has been shown that lower pulp density results in higher indium and tin dissolution. The A. ferrooxidans bioleaching system showed better metal extraction results than A. thiooxidans, especially for tin, indicating the special role of iron and A. ferrooxidans in tin recovery. The highest leaching rate of both indium (94.7%) and tin (98.2%) was obtained using iron and sulfur medium inoculated with mixed bacteria and a pulp density of 1% w/v.
Słowa kluczowe
Rocznik
Strony
15--23
Opis fizyczny
Bibliogr. 32 poz., rys. kolor.
Twórcy
  • Silesian University of Technology, Department of Metallurgy and Recycling, Faculty of Materials Engineering, ul. Krasińskiego 8, Katowice, Poland
  • Silesian University of Technology, Department of Production Engineering, Faculty of Materials Engineering, ul. Krasińskiego 8, Katowice, Poland
  • Silesian University of Technology, Department of Metallurgy and Recycling, Faculty of Materials Engineering, ul. Krasińskiego 8, Katowice, Poland
  • University of St. Cyril and Methodius of Trnava, Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, Nám. J. Herdu 2, 917 01 Trnava, Slovak Republic
  • Czestochowa University of Technology, Department of Extraction and Recirculation of Metals, ul. Armii Krajowej 21, Częstochowa, Poland
Bibliografia
  • AKCIL, A., CIFTCI, H., DEVECI, H. 2007. Role and contribution of pure and mixed cultures of mesophilesin bioleaching of a pyritic chalcopyrite concentrate. Miner Eng. 20, 310‒318.
  • AMATO, A., BEOLCHINI, F. 2018. End of life liquid crystal displays recycling: A patent review. J Environ. Manage. 225, 1–9.
  • BRANDL, H., BOSSHARD, R., WEGMANN, M. 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy. 59, 319-326.
  • FU, B., ZHOU, H., ZHANG, R., QIU, G. 2008. Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum. International Biodeterioration & Biodegradation. 62, 109-115.
  • GRISHIN, S.I., BIGHAM, J.M., TUOVINEN, O.H. 1989. Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in packed-bed reactor. Applied and Environmental Microbiology. 54, 3101-3106.
  • ILYAS, S., MUNIR, A., ANWAR, A., NIAZI, S., NIAZI, S., GHAURI, M., GHAURI M. 2007. Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88, 180-188.
  • IVANUS, R.C. 2010. Bioleaching of metals from electronic scrap by pure and mixed culture of acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans. Metalurgia International. 15(4), 62-70.
  • JOWKAR, M.J., BAHALOO-HOREH, N., MOUSAVI, S.M., POURHOSSEIN, F. 2018. Bioleaching of indium from discarded liquid crystal displays. J Clean Prod. 180, 417-429.
  • KAE-LONG, L., WEN-KAI, C., TIEN-CHIN, C., CHING-HWA, L., CHUN-HSU, L. 2009. Recycling thin film transistor liquid crystal display (TFT-LCD) waste glass produced as glass–ceramic. J. Clean. Prod. 16, 1499-1503.
  • MA, E., LU, R., XU, Z. 2012. An efficient rough vacuum-chlorinated separation method for the recovery of indium from waste liquid crystal display panels. Green Chem. 14, 3395-3401.
  • NAGAR, N., GARG, H., SHARMA, N., AWE, S.A., GAHAN, C.S. 2021. Effect of pulp density on the bioleaching of metals from petroleum refinery spent catalyst. Biotech. 11, 143-152.
  • PEREIRA, E.B., SULIMAN, A.L., TANABE, E.H., BERTUOL, D.A. 2018. Recovery of indium from liquid crystal displays of discarded mobile phones using solvent extraction Minerals Engineering. 119, 67–72.
  • QIN, J., NING, S., FUJITA, T., WEI, Y., ZHANG, S., LU, S. 2021. Leaching of indium and tin from waste LCD by a timeefficient method assisted planetary high energy ball milling Waste Management. 120, 193-201.
  • QUI, M.Q., XIONG, S.Y., ZHANG, W.M., WANG, G.X. 2005. A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture. Miner Eng. 18(9), 987‒990.
  • REZAEI, O., MOUSAVI, S.M., POURHOSSEIN, F. 2018. Recovery of indium from mobile phone touch screen Rusing adapted Acidithiobacillus ferrooxidans. Int J Biosci Biochem Bioinforma. 8, 117-124.
  • ROCHETTI, L., AMATO, A., FONTI, V., UBALDINI, S., DE MICHELIS, I., KOPACEK, B., VEGLIO, F., BEOLCHINI, F. 2015. Cross-current leaching of indium from end-of-life LCD panels. Waste Manage. 42, 180-187.
  • RUAN, J., GUO, Y., QIAO, Q. 2012. Recovery of indium from scrap TFT-LCDs by solvent extraction. Proc. Environ. Sci. 16, 545-551.
  • SEDLAKOVA-KADUKOVA, J., MARCINCAKOVA, R., MRAZIKOVA, A., WILLNER, J., FORNALCZYK, A. 2017. Closing the loop: key role of iron in metal-bearing waste recycling. Arch. Metall. Mater. 62, 1459-1466
  • TOACHE-PEREZ, A.D., BOLARIN-MIRO, A.M., SÁNCHEZ-DE JESÚS, F., LAPIDUS, G.T. 2020. Facile method for the selective recovery of Gd and Pr from LCD screen wastes using ultrasound-assisted leaching. Sustain. Environ. Res. 30, 20-28.
  • UEBERSCHAAR, M., SCHLUMMER, M., JALALPOOR, D., KAUP, N., ROTTER, V.S. 2017. Potential and Recycling Strategies for LCD Panels from WEEE, Recycling. 2, 7-15.
  • VAKILCHAP, F., MOUSAVI, S.M., SHOJAOSADATI, S.A. 2016. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresource Technology. 218, 991-998.
  • VALIX, M. 2017. Bioleaching of Electronic Waste: Milestones and Challenges. Editor(s): J. W.-C. Wong, R.D. Tyagi, A. Pandey, Current Developments in Biotechnology and Bioengineering, Elsevier. 407-442.
  • VESTOLA, E.A., KUUSENAHO, M.K., NÄRHI, H.M., TUOVINEN, O.H., PUHAKKA, J.A., PLUMB, J.J., KAKSONEN, A.H. 2010. Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 103, 74–79.
  • WILLNER, J., FORNALCZYK, A. 2013. Extraction of metals from electronic waste by bacterial leaching Environmental Protection Engineering. 9, 197-208.
  • WILLNER, J., FORNALCZYK, A., GAJDA, B., SATERNUS, M. 2018. Bioleaching of indium and tin from used LCD panels. Physicochem. Probl. Miner. Process. 53, 639-645.
  • WILLNER, J., FORNALCZYK, A., JABLONSKA-CZAPLA, M., GRYGOYC, K., RACHWAL, M. 2021. Studies on the Content of Selected Technology Critical Elements (Germanium, Tellurium and Thallium) in Electronic Waste. Materials. 214, 3722-3732.
  • WILLNER, J., KADUKOVA, J., FORNALCZYK, A., SATERNUS, M. 2015. Biohydrometallurgical methods for metals recovery from waste materials. Metallurgy. 54, 255-259.
  • XIE, Y., WANG, S., TIAN, X., CHE, L., WU, X., ZHAO, F. 2019. Leaching of indium from end-of-life LCD panels via catalysis by synergistic microbial communities. Sci Total Environ. 655, 781–786.
  • YANG, J. 2012. Recovery of indium from end-of-life Liquid Crystal Diplays. BSc Thesis, Chalmers University of Technology, Gothenburg, Sweden.
  • ZHANG, K., WU, Y., WANG, W., BIN, L., YINAN, Z., TIEYONG, Z. 2015. Recycling indium from waste LCDs: A review. Resources, Conservation and Recycling. 104, 276–290.
  • 2020-Communication From The Commission To The European Parliament, The Council, The European Economic And Social Committee And The Committee Of The Regions. Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability. Brussels.
  • C 22 B 25/06 European Patent Application, 27.05.80. Process for detinning tin coated scrap. 1-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f8fed93-e69d-493d-abf4-c8b5ba769e80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.