Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An in-situ nanoindenter with a flat tip was employed to conduct buckling tests of a single nanowire with simultaneous SEM imaging. A series of SEM images allowed us to calculate deflection. The deflection was confronted with the mathematical model of elastica. The post-buckling behaviour of nanowires is conducted in the framework of the nonlinear elasticity theory. Results show the significant effect of geometrical parameters on the stability of buckled nanowires.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. e143648
Opis fizyczny
Bibliogr. 29 poz.., rys.
Twórcy
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Poland
autor
- Institute of Nuclear Physics Polish Academy of Sciences, Poland
Bibliografia
- [1] V.G.A. Goss, “The history of the planar elastica: insights into mechanics and scientific method,” Sci. Educ., vol. 18, no. 8, pp. 1057–1082, 2009, doi: 10.1007/s11191-008-9166-2.
- [2] S. Matsutani, “Euler’s elastica and beyond,” J. Geom. Symmetry Phys., vol. 17, pp. 45–86, 2010, doi: 10.7546/jgsp-17-2010-45-86.
- [3] S. Deshpande, “Buckling and post buckling of structural components,” M.S. thesis, The University of Texas at Arlington, 2010. [Online]. Available: https://search.proquest.com/openview/1ec9e5d3c1d9eb0faf2639416b7b4743/1?pq-origsite=gscholar&cbl=18750, [Accessed: 24 Feb. 2022].
- [4] J. Coyne, “Analysis of the formation and elimination of loops in twisted cable,” IEEE J. Oceanic Eng., vol. 15, no. 2, pp. 72–83, 1990, doi: 10.1109/48.50692.
- [5] Ü. Sönmez, “Synthesis methodology of a compliant exact long dwell mechanism using elastica theory,” Int. J. Mech. Mater. Des., vol. 3, pp. 73–90, 2006, doi: 10.1007/s10999-006-9014-y.
- [6] H.H. Hilton and S.J. D’Urso, “Designer Euler and elastica columns subjected to aerodynamic loads-system engineering of the aeroelasticity of wind turbine towers”, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013, doi: 10.2514/6.2013-1821.
- [7] V. Goss and R. Chaouki, “Loading paths for an elastic rod in contact with a flat inclined surface,” Int. J. Solids Struct., vol. 88–89, pp. 274–282, 2016, doi: 10.1016/j.ijsolstr.2016.02.042.
- [8] H. Yoshihara and M. Maruta, “Critical load for buckling of solid wood elements with a high slenderness ratio determined based on elastica theory”, Holzforschung, vol. 76, no. 2, pp. 179–187, 2022, doi: 10.1515/hf-2021-0108.
- [9] P.A. Djondjorov, M.T. Hadzhilazova, I.M. Mladenov, and V.M. Vassilev, “Explicit parameterisation of Euler’s elastica,” Proc. of the Ninth International Conference on Geometry, Integrability and Quantisation. (Geometry, Integrability and Quantization, Proceedings Series), Bulgaria, pp. 175–187, 2008, doi: 10.7546/giq-9-2008-175-186.
- [10] A. Balaeff, L. Mahadevan and K. Schulten, “Modeling DNA loops using the theory of elasticity,” Phys. Rev. E, vol. 73, p. 031919, 2006, doi: 10.1103/PhysRevE.73.031919.
- [11] A.A. Travers and J.M.T. Thompson, “An introduction to the mechanics of DNA,” Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., vol. 362, pp. 1265–1279, 2004, doi: 10.1098/rsta.2004.1392.
- [12] H. Shima, “Buckling of carbon nanotubes: A state of the art review,” Materials, vol. 5, no. 1, pp. 47–84, 2011, doi: 10.3390/ma5010047.
- [13] H.W. Yap, R.S. Lakes, and R.W. Carpick, “Mechanical instabilities of individual multiwalled carbon nanotubes under cyclic axial compression,” Nano Lett., vol. 7, no. 5, pp. 1149–1154, 2007, doi: 10.1021/nl062763b.
- [14] A. Muc and A. Banaś, “Eigenproblems in nanomechanics”, Bull. Pol. Acad. Sci. Tech. Sci, vol. 63, no 3, pp. 819–25, 2015.
- [15] T. Kuzumaki and Y. Mitsuda, “Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope,” Jpn. J. Appl. Phys., vol. 45, no. 1A, pp. 364–368, 2006, doi: 10.1143/jjap.45.364.
- [16] V.V. Dobrokhotov, M.M. Yazdanpanah, S. Pabba, A. Safir, and R.W. Cohn, “Visual force sensing with flexible nanowire buckling springs,” Nanotechnology, vol. 19, no. 3, p. 35502, 2008, doi: 10.1088/0957-4484/19/03/035502.
- [17] S. Pathak, Z.G. Cambaz, S.R. Kalidindi, J.G. Swadener, and Y.Gogotsi, “Viscoelasticity and high buckling stress of dense carbon nanotube brushes,” Carbon, vol. 47, no. 8, pp. 1969–1976, 2009, doi: 10.1016/j.carbon.2009.03.042.
- [18] J. Aizpurua, G.W. Bryant, L.J. Richter, F.J. García de Abajo, B.K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B, vol. 71, no. 23, p. 235420, 2005, doi: 10.1103/physrevb.71.235420.
- [19] R. Krahne, L. Manna, G. Morello, and A. Figuerola, Physical properties of nanorods. NanoScience and Technology series, Springer Berlin, Heidelberg, 2013, doi: 10.1007/978-3-642-36430-3.
- [20] A. Machín et al., “One-Dimensional (1D) nanostructured materials for energy applications,” Materials, vol. 14, no. 10, p. 2609, May 2021, doi: 10.3390/ma14102609.
- [21] X. Li, L. Li, Y. Hu, Z. Ding, and W. Deng, “Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory,” Compos. Struct., vol. 165, pp. 250–265, 2017, doi: 10.1016/j.compstruct.2017.01.032.
- [22] N.A.C. Sidik, M.N.A.W.M. Yazid, and S. Samion, “A review on the use of carbon nanotubes nanofluid for energy harvesting system,” Int. J. Heat Mass Transf., vol. 111, pp. 782–794, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.04.047.
- [23] I.F. Golovnev, E.I. Golovneva, and A.V. Utkin, “Effect of the Nanorod Size on Energy Absorption at the Microlevel under Cyclic Loading,” Phys. Mesomech., vol. 22, no. 5, pp. 420–431, 2019, doi: 10.1134/S1029959919050084.
- [24] A.R. Setoodeh, M. Khosrownejad, and P. Malekzadeh, “Exact nonlocal solution for postbuckling of single-walled carbon nanotubes,” Physica E, vol. 43, no. 9, pp. 1730–1737, 2011, doi: 10.1016/j.physe.2011.05.032.
- [25] C. Thongyothee and S. Chucheepsakul, “Postbuckling behaviors of nanorods including the effects of nonlocal elasticity theory and surface stress,” J. Appl. Phys., vol. 114, no. 24, p. 0243507, 2013, doi: 10.1063/1.4829896.
- [26] D. Bigoni, Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability, Cambridge: Cambridge University Press, 2012.
- [27] J. Feliciano, C. Tang, Y. Zhang, and C. Chen, “Aspect ratio dependent buckling mode transition in single-walled carbon nanotubes under compression,” J. Appl. Phys., vol. 109, no. 8, p. 084323, 2011, doi: 10.1063/1.3569616.
- [28] L. Philippe, B. Cousin, Z. Wang, D.F. Zhang, and J. Michler, “Mass density of individual cobalt nanowires,” Appl. Phys. Lett., vol. 96, no. 5, p. 51903, 2010, doi: 10.1063/1.3299013.
- [29] D. Bigoni, F. Bosi, D. Misseroni, F. Dal Corso, and G. Noselli, “New phenomena in nonlinear elastic structures: from tensile buckling to configurational forces” in Extremely Deformable Structures, CISM Lecture Notes No. 562, Springer, 2015, pp. 55–137, doi: 10.1007/978-3-7091-1877-1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f8edbb9-34d5-43dc-8a7f-b6517c5e034a