PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An improved resonant thermal converter based on micro-bridge resonator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the design, fabrication and testing of an improved thin-film thermal converter based on an electro-thermally excited and piezo-resistively detected micro-bridge resonator. The resonant thermal converter comprises a bifilar heater and an opposing micro-bridge resonator. When the micro-bridge resonator absorbs the radiant heat from the heater, its axial strain changes, then its resonant frequency follows. Therefore the alternating voltage or current can be transferred to the equivalent DC quantity. A non-contact temperature sensing mechanism eliminates heat loss from thermopiles and reduces coupling capacitance between the temperature sensor and the heater compared with traditional thin-film thermal converters based on thermopiles. In addition, the quasi-digital output of the resonant thin-film thermal converter eliminates such problems as intensity fluctuations associated with analogue signals output by traditional thin-film thermal converters. Using the fast-reversed DC (FRDC) method, the thermoelectric transfer difference, which determines the frequency-independent part of the ac-dc transfer difference, is evaluated to be as low as 1.1 · 10-6. It indicates that the non-contact temperature sensing mechanism is a feasible method to develop a high-performance thermal converter.
Rocznik
Strony
715--725
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., wzory
Twórcy
autor
  • China Jiliang University, The College of Mechanical & Electrical Engineering, Hangzhou, 310018, China
autor
  • China Jiliang University, The College of Mechanical & Electrical Engineering, Hangzhou, 310018, China
autor
  • China Jiliang University, The College of Mechanical & Electrical Engineering, Hangzhou, 310018, China
autor
  • China Jiliang University, The College of Mechanical & Electrical Engineering, Hangzhou, 310018, China
autor
  • China Jiliang University, The College of Mechanical & Electrical Engineering, Hangzhou, 310018, China
autor
  • China Jiliang University, The College of Mechanical & Electrical Engineering, Hangzhou, 310018, China
Bibliografia
  • [1] Klonz, M., Weimann, T. (2002). Accurate thin film multijunction thermal converter on a silicon chip (ac-dc standard). IEEE Transactions on Instrumentation & Measurement, 38(1), 335-337.
  • [2] Scarioni, L., Klonz, M., Funck, T., Kessler, E. (2006). New generation of crystal quartz thin-film multijunction thermal converters. IEEE Transactions on Instrumentation & Measurement, 55(6), 2281-2285.
  • [3] Lipe, T.E., Kinard, J.R., Novotny, D.B. (2012). New high-frequency MJTCs of novel design on fused silica substrates. Precision Electromagnetic Measurements IEEE, 434-435.
  • [4] Bubanja, V. (2000). The ac-dc difference of single-junction thermal converters. Journal of Engineering Mathematics, 38(1), 33-50.
  • [5] Kinard, J.R., Huang, D.X., Novotny, D.B. (1994). Multilayer film multijunction thermal converters. WO, 1994016464 A1.
  • [6] Klonz, M., Weimann, T. (1998). Accurate Thin Film Multijunction Thermal Converter on a Silicon Chip. Precision Electromagnetic Measurements, CPEM 88 Digest. Conference on IEEE, 215-216.
  • [7] Scarioni, L., Klonz, M., Kebler, E. (2007). Explanation for the ac–dc voltage transfer differences in thin-film multijunction thermal converters on silicon chips at high frequencies. IEEE Transactions on Instrumentation & Measurement, 56(1), 567-570.
  • [8] Kim, J.S., Lee, H.C., Lee, J.H., Lee, J.H., Park, S.I., Kwon, S.W. (2002). A planar bi-sb multijunction thermal converter with small ac-dc transfer differences. IEEE Transactions on Instrumentation & Measurement, 51(1), 115-119.
  • [9] Fujiki, H., Kasai, N., Sasaki, H., Shoji, A. (2004). High-Performance Thin-Film Multijunction Thermal Converter Developed at AIST. Precision Electromagnetic Measurements Digest, 2004 Conference on IEEE, 459-460.
  • [10] Laiz, H., Klonz, M., Kessler, E., Kampik, M., Lapuh, R. (2003). Low-frequency ac-dc voltage transfer standards with new high-sensitivity and low-power-coefficient thin-film multijunction thermal converters. IEEE Transactions on Instrumentation & Measurement, 52(1), 350-354.
  • [11] Abdulrazzaq, B.I., Ibrahim, O.J., Kawahito, S., Sidek, R.M., Shafie, S., Yunus, N.A., et al. (2016). Design of a sub-picosecond jitter with adjustable-range cmos delay-locked loop for high-speed and low-power applications. Sensors, 16(10).
  • [12] Dintner, H., Klonz, M., Lerm, A., Volklein, F., Weimann, T. (2002). Ac-dc-mv-transfer with highly sensitive thin-film multijunction thermal converters. IEEE Transactions on Instrumentation & Measurement, 42(1), 612-614.
  • [13] Katzmann, F.L. (1989). A new isothermal multijunction differential thermal element provides fast settling ac to dc converter. IEEE Transactions on Instrumentation & Measurement , 38(1), 346-350.
  • [14] Katzmann, F.L., Stollery, D.E. (1993). A new optically sensed thermal element for precise ac-dc conversion. IEEE Transactions on Instrumentation & Measurement , 42(1), 191-194.
  • [15] Katzmann, F.L., Klonz, M. (1998). Ac-dc thermal converter with infrared-transmissive fiber coupling. IEEE Transactions on Instrumentation & Measurement, 48(1), 415-417.
  • [16] Katzmann, F.L., Klonz, M. (1995). Fast thin-film isothermal ac-dc converter with radiometric sensing. IEEE Transactions on Instrumentation & Measurement, 44(1), 391-394.
  • [17] Han, J., Huang, R., Zhang, P., Cheng, B., Dong, L., Han, D. (2018). A novel film thermal converter based on an electrothermally excited/piezoresistively detected microbridge resonator. IEEE Transactions on Instrumentation & Measurement, 99, 1-9.
  • [18] Katzmann, F.L., Klonz, M. (1994). A thin-film dual heater ac-dc converter with infrared sensor. Precision Electromagnetic Measurements. Digest. 1994 Conference on IEEE, 413-414.
  • [19] Tilmans, H.A.C., Elwenspoek, M., Fluitman, J.H.J. (1992). Micro resonant force gauges. Sensors & Actuators A Physical, 30(1-2), 35-53.
  • [20] Han, J.Q., Sen-Lin, L.I., Yan, L.I., Wang, X.F., Feng, R.S. (2015). Resonant IR detectors based on microbridge resonators electrothermally excited and piezoresistively detected using polysilicon resistors of negative tTCR. Journal of Infrared & Millimeter Waves, 34(1), 134-139.
  • [21] Klonz, M., Spiegel, T., Zirpel, R., Inglis, B.D., Hammond, G., Sasaki, H. (2002). Measuring thermoelectric effects in thermal converters with a fast reversed dc. IEEE Transactions on Instrumentation & Measurement, 44(1), 379-382.
  • [22] Sasaki, H., Takahashi, K., Klonz, M., Endo, T. (1993). High-precision AC-DC transfer standards at ETL. IEEE Transactions on Instrumentation & Measurement, 42(1), 603-607.
  • [23] Sasaki, H., Takahashi, K., Klonz, M. (1994). Development of a fast-reversed-dc current source. Precision Electromagnetic Measurements Digest, 1994 Conference on IEEE, 386-387.
  • [24] Klonz, M., Spiegel, T., Sasaki, H., Takahashi, K. (1996). Fast reversed dc: basic reference for ac-dc transfer. Precision Electromagnetic Measurements Digest, 1996 Conference on IEEE, 501-502.
  • [25] Han, J.Q., Wang, X.F., Feng, R.S. (2012). Dependence of the Resonance Frequency of Mircobridge Resonators on the Thermal Power and Vacuum. Advanced Materials Research, 465, 14-22.
  • [26] Klonz, M., Laiz, H., Kessler, E. (2001). Development of thin-film multijunction thermal converters at ptb/ipht. IEEE Transactions on Instrumentation & Measurement, 50(6), 1490-1498.
  • [27] Klonz, M., Weimann, T. (1991). Increasing the time constant of a thin film multijunction thermal converter for low frequency application. IEEE Transactions on Instrumentation & Measurement, 40(1), 350-351.
Uwagi
EN
1. The authors would like to acknowledge the financial support from the Natural Science Foundation of China (61376114,51377025).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f8e7234-3d2c-4792-8cd3-7d224db2c637
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.