PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Location of generating units most affecting the angular stability of the power system based on the analysis of instantaneous power waveforms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the results of investigations on the location of generating units most affecting the angular stability of a large power system (PS) are presented. For their location, the eigenvalues of the PS model state matrix associated with electromechanical phenomena (electromechanical eigenvalues) were used. The eigenvalues were calculated on the basis of the analysis of the disturbance waveforms of instantaneous power of the generating units operating in the PS. The used method of calculating eigenvalues consists in approximation of the disturbance waveforms of generating units by the waveforms being the superposition of modal components. The parameters of these components depend on the sought eigenvalues and their participation factors. The objective function was defined as the mean square error between the approximated and approximating waveforms. To minimize it, a hybrid algorithm, being a combination of genetic and gradient algorithms, was used. In the instantaneous power waveforms of generating units most affecting the PS angular stability, the least damped or undamped modal components dominate. They are related to eigenvalues with the largest values of real parts. The impact of individual modal components on the disturbance waveforms of subsequent generating units was determined with the use of participation factors and correlation coefficients of electromechanical eigenvalues.
Rocznik
Strony
273--293
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10, 44-100 Gliwice, Poland
  • Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Belazzoug, M. Boudour and K. Sebaa: FACTS location and size for reactive power system compensation through the multi-objective optimization, Archives of Control Sciences, 20(4) (2010) 473-489.
  • [2] S. Daniar, M. Shiroei, and R. Aazami: Multivariable predictive control considering time delay for load-frequency control in multi-area power systems, Archives of Control Sciences, 26(4) (2016) 527-549.
  • [3] E.J. Davison: A Method for Simplifying Linear Dynamic Systems, IEEE Transactions on Automatic Control, AC-11(1) (1966), 93-101.
  • [4] J. Guckenheimer and P. J. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
  • [5] A. M. Hemeida and G. El-Saady: Damping power system oscillations using FACTS combinations, UPEC, September (2004), Vol. 1, 333-337.
  • [6] M. John, A. Mertens, M. Popp, and W. Mathis: Model Order Reduction for a Full Scale Grid Converter for Grid Simulations, 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), (11-14 Sept. 2017), P-1–P-9.
  • [7] T. Kaczorek: Control and System Theory, PWN, Warszawa 1993.
  • [8] A. Kazemi and H. Andami: FACTS Devices in Deregulated Electric Power Systems: A Review, Proceedings of the IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT 2004), April 2004, Hong Kong, 337-342.
  • [9] D. Khanh, P. Vasant, I. Elamvazuthi, and V. Dieu: Optimization of thermo-electric coolers using hybrid genetic algorithm and simulated annealing, Archives of Control Sciences, 24(2) (2014) 155-176.
  • [10] J. Machowski, J. Białek and J. Bumby: Power System Dynamics. Stability and Control, John Wiley & Sons, Chichester, New York, 2008.
  • [11] W. Mathis and J.-K. Bremer: Design of nonlinear CMOS circuits in the Nano-GHz Era and its mathematical challenges, Math. Comput. Simul., 82(3) (2011), 381-391.
  • [12] W. Mathis and J.-K. Bremer: Modelling and design concepts for electronic oscillators and its synchronization, The Open Cybernetics and Systemics Journal, 3 (2009), 47-60.
  • [13] K. Ogata: Modern Control Engineering, Prentice Hall, 2010.
  • [14] S. Paszek, A. Boboń, S. Berhausen, Ł. Majka, A. Nocoń, and P. Pruski: Synchronous generators and excitation systems operating in a power system. Measurements methods and modeling, Monograph, series: Lecture Notes in Electrical Engineering, vol. 631, Springer, 2020.
  • [15] S. Paszek and A. Nocoń: Optimisation and Polyoptimisation of Power System Stabilizer Parameters, LAMBERT Academic Publishing, Saarbrücken, 2014.
  • [16] Power Technologies, a Division of S&W Consultants Inc.: Program PSS/E Application Guide. Siemens Power Technologies Inc., 2002.
  • [17] P. Pruski and S. Paszek: Assessment of Polish Power System angular stability based on analysis of different disturbance waveforms, Bulletin of the Polish Academy of Sciences: Technical Sciences, 63(2) (2015), 435-441.
  • [18] P. Pruski and S. Paszek: Calculations of power system electromechanical eigenvalues based on analysis of instantaneous power waveforms at different disturbances, Applied Mathematics and Computation, 319 (2018), 104-114.
  • [19] P. Pruski and S. Paszek: The modal analysis of selected disturbance waveforms in a power system. Determination of angular stability factors, Monograph, Silesian University of Technology Publishing House, Gliwice, 2016 (in Polish).
  • [20] S. Robak, K. Gryszpanowicz, M. Piekarz, and M. Polewaczyk: Transient stability enhancement by series braking resistor control using local measurements, Electrical Power and Energy Systems, 112 (2019), 272-281.
  • [21] R. H. Rossen and L. Lapidus: Minimum Realization and System Modeling: I. Fundamental Theory and Algorithms, AIChE Journal, 18(4) (1972), 673-684.
  • [22] R. H. Rossen and L. Lapidus: Minimum Realization and System Modeling: II. Theoretical and Numerical Extensions, AIChE Journal, 18(5) (1972), 881-892.
  • [23] H. Weber and W. Mathis: Analysis and Design of Nonlinear Circuits With a Self-Consistent Carleman Linearization, IEEE Transactions on Circuits and Systems-I: Regular Papers, 65(12) (December 2018), 4272-4284.
  • [24] L. Wörner, S. Kulig, M. Willing and P. Winzer: Genetic Algorithm Embedded into a Quality-Oriented Workflow of Methods for the Development of a Linear Drive used in Intralogistic Systems, Archives of Electrical Engineering, 63(4) (2014), 647-665.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f8dddd2-bbfd-4a24-a757-ca769c5149b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.