PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD analysis of a wind panel with Savonius wind turbines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of numerical analyses of a wind panel built of 6 vertical Savonious wind turbines. The basis for comparison were calculations made for a single turbine with the same parameters. Simulations were performed for six different directions of inflow, from almost parallel to the panel (5°) to almost perpendicular (85°). The calculations were performed using the Ansys FLUENT program, while the computational grids were prepared in the GMSH program. The aim of the analyses was to investigate the influence of the wind inflow angle on the panel on the amount of energy produced on subsequent turbines. The analysis covered the velocities between individual turbines and their influence on subsequent turbines. The calculations were performed as time-varying on a two-dimensional plane. Based on the obtained results, it was found that the inflow angle has a large influence on the efficiency of subsequent turbines as well as inflow velocity. For the angles up to 30° the aerodynamic wake behind subsequent turbines has a huge influence on the stability of the inflow on the next ones. For the cases from 45° the flow between turbines starts play significant role.
Twórcy
  • Institute of Thermal Energy, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Institute of Thermal Energy, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland
  • Institute of Management and Information Systems, Poznan University of Technology, ul. Jacka Rychlewskiego 2, 60-965 Poznan, Poland
Bibliografia
  • 1. Cichon´ , A.; Malinowski, P.; Mazurek, W., Porównanie możliwości wykorzystania małych turbin wiatrowych o poziomej i pionowej osi obrotu, Przegląd Elektrotechniczny, 2016/09, 92, https://doi.org/10.15199/48.2016.09.63.
  • 2. Poplawski, T., Problematyka prognoz generacji wiatrowej w KSE, Przegląd Elektrotechniczny, 2014; 7(90): 119–122, https://doi.org/10.12915/pe.2014.07.23.
  • 3. Boczar, T.; Szczyrba, T., Ocena wpływu warunków meteorologicznych na sprawność turbin wiatrowych, Pomiary, Automatyka, Kontrola, 2012; 58(12), 1044–1047.
  • 4. Jarzyna, W.; Pawłowski, A.; Viktorich, N., Technological development of wind energy and compliance with requirements for sustainable development, Problems of Sustainable Development, 2014; 9(1): 167–177.
  • 5. Anup, K.C.; Whale, J.; Urmee, T., Urban wind conditions and small wind turbines in the built environment: A review;, Renewable Energy, 2019; 131: 268–286. https://doi.org/10.1016/j.renene.2018.07.050.
  • 6. Pagnini, L.C.; Burlando, M; Repetto, M.P., Experiment power curve of small size wind turbines in turbulent urban environment, Applied Energy, 2015; 154: 112–121. https://doi.org/10.1016/j.apenergy.2015.04.117.
  • 7. Firdaus, B.; Izwan, I.; Thamir, K. I.; Daing, M. N. D. I.; Shahrani, A., A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia, AIP Conference Proceedings, 2017, 1826, https://doi.org/10.1063/1.4979239.
  • 8. VINDPANEL. Available online: https://www.vindpanel.com/ (accessed on 17-04-2025).
  • 9. New Atlas. Available online: https://newatlas.com/energy/wind-turbine-wall-doucet/ (accessed on 15-04-2025).
  • 10. Zemamou, M.; Aggour, M.; Toumi, A., Review of Savonius wind turbine design and performance, Energy Procedia, 2017; 141: 383–388, https://doi.org/10.1016/j.egypro.2017.11.047.
  • 11. Im, H.; Kim, B. Power, performance analysis based on savonius wind turbine blade design and layout optimization through rotor wake flow analysis, Energies, 2022; 15: 9500, https://doi.org/10.3390/en15249500.
  • 12. Mohamed, M.; Dessoky, A.; Hafiz, A. A., CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter, Engineering Science and Technology, an International Journal, 2014; 9(18). https://doi.org/10.1016/j.jestch.2014.08.002.
  • 13. Alaimo, A.; Esposito, A.; Messineo, A.; Orlando, C.; Tumino, D, 3D CFD analysis of a vertical axis wind turbine, Energies, 2015; 4: 3010–3033. https://doi.org/10.3390/en8043013.
  • 14. Acosta, J.L.; Combe, K.; Djokic, S.Z.; Hernando-Gil, I., Performance Assessment of Micro and Small-Scale Wind Turbines in Urban Areas, IEEE Systems Journal, March 2012; 6(1). https://doi.org/10.1109/JSYST.2011.2163025.
  • 15. Zagubien, A.; Wolniewicz, K., Energy efficiency of small wind turbines in an urbanized area – case studies, Energies 2022; 15(14). https://doi.org/10.3390/en15145287.
  • 16. Firoz, A.; Yingai, J., The Utilisation of Small Wind Turbines in Built-Up Areas: Prospects and Challenges, Wind 2023; 3(4): 418-138. https://doi.org/10.3390/wind3040024.
  • 17. Ferrigno, Kevin J., Challenges and strategies for increasing adoption of small wind turbines in urban areas (2010).
  • 18. Amer, A.; Azab, A.; Maher, A.A.; Awad, A.S.A., A stochastic program for siting and sizing fast charging stations and small wind turbines in urban areas, IEEE Transactions on Sustainable Energy, April 2021; 12(2). https://doi.org/10.1109/TSTE.2020.3039910.
  • 19. Battisti, L.; Benini, E.; Brighenti, A.; Dell’Anna, S.; Raciti Castelli, M., Small wind turbines effectiveness in the urban environment, Renewable Energy, 2018; 129(Part A), 102–113. https://doi.org/10.1016/j.renene.2018.05.062.
  • 20. Appadurai, M.; Fantin Irudaya Raj, E.; Lurthu Pushparaj, T., Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications – a numerical study, Emergent Materials 2022; 5: 565–578. https://doi.org/10.1007/s42247-022-00375-x.
  • 21. Ghafoorian, F.; Mirmotahari, S.R.; Mehrpooya, M.; Akhlagi, M., Aerodynamic performance and efficiency enhancement of a Savonius vertical axis wind turbine with Semi-Directional Curved Guide Vane, using CFD and optimization method, Journal of the Brazilian Society of Mechanical Sciences and Engineering 2024; 46: 443. https://doi.org/10.1007/s40430-024-05030-6.
  • 22. Ghafoorian, F.; Mirmotahari, S.R.; Wan, H., Numerical study on aerodynamic performance improvement and efficiency enhancement of the Savonius vertical axis wind turbine with semi-directional airfoil guide vane, Ocean Engineering, 2024; 307.
  • 23. Fatahian H.; Mishra R.; Jackson F.F.; Fatahian E., Design optimization of an innovative deflector with bleed jets to enhance the performance of dual Savonius turbines using CFD-Taguchi method, Energy Conversion and Management, 2023; 296.
  • 24. Wenlong Tian; Xiwen Ni; Zhaoyong Mao; Yan-Feng Wang, Study on the performance of a new VAWT with overlapped side-by-side Savonius rotors, Energy Conversion and Management, 2022; 264.
  • 25. Al-Gburi, K.A.H.; Alnaimi, F.B.I.; Al-quraishi, B.A.J.; Tan, E.S.; Kareem, A.K. Enhancing Savonius vertical axis wind turbine performance: a comprehensive approach with numerical analysis and experimental investigations. Energies 2023; 16: 4204. https://doi.org/10.3390/en16104204.
  • 26. Zemamoua, M., Aggoura, M., Toumi, A. Review of Savonius wind turbine design and performance, Energy Procedia, 2017; 141: 383–388, https://doi.org/10.1016/j.egypro.2017.11.047.
  • 27. Heejeon I.; Bumsuk K. Power performance analysis based on Savonius wind turbine blade design and layout optimization through rotor wake flow analysis, Energies 2022; 15: 9500. https://doi.org/10.3390/en15249500.
  • 28. Swidyrczuk, J.; Doerffer, P.; Szymaniak, M. Unsteady flow through the gap of Savonius turbine rotor, Task Quartelry 2011; 15(1): 59–70.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f8dd342-abcf-45e5-a5ba-4a79d63a848b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.