Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wykład noblowski Kipa S.Thorne’a (California Institute of Technology, Pasadena, USA), 8 grudnia 2017. Opublikowany w języku polskim za zgodą Nobel Foundation ©The Nobel Foudation 2017 Przekład opublikowany przy wsparciu finansowym Fundacji Pro-Physica
Wydawca
Czasopismo
Rocznik
Tom
Strony
18--41
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
Bibliografia
- Ajith, P., et al., 2007, “Phenomenological Template Family for Black-Hole Coalescence Waveforms,” Classical Quantum Gravity 24, S689–S700.
- Almheiri, A, D. Marolf, J. Polchinski, and J. Sully, 2013, “Black Holes: Complementarity or Firewalls?” J. High Energy Phys. 02, 062.
- Armano, M., et al., 2018, “Beyond the Required LISA Free-Fall Performance: New LISA Pathûnder Results Down to 20 µHz,” Phys. Rev. Lett. 120, 061101.
- Arnowitt, R., S. Deser, and C. W. Misner, 1962, The Dynamics of General Relativity,” Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York), Chap. 7.
- Baker, J. G., J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, 2006, “Gravitational-Wave Extraction from an Inspiraling Conûguration of Merging Black Holes,” Phys. Rev. Lett. 96, 111102.
- Blanchet, L., 2014, “Gravitational Radiation from Post Newtonian Sources and Inspiralling Compact Binaries,” Living Rev. Relativity 17, 2.
- Bohn, A., et al., 2015, “What Does a Binary Black Hole Merger Look Like?” Classical Quantum Gravity 32, 065002.
- Braginsky, V. B., 1968, “Classical and Quantum Restrictions on the Detection of Weak Disturbances of a Macroscopic Oscillator,” Sov. Phys. JETP 26, 831– –834.
- Braginsky, V. B., and Yu. I. Vorontsov, 1975, “Quantum Mechanical Limitations in Macroscopic Experiments and Modern Experimental Technique,” Sov. Phys. Usp. 17, 644–650.
- Braginsky, V. B., and F. Ya. Khalili, 1996,“Quantum Nondemolition Measurements: he Route from Toys to Tools,” Rev. Mod. Phys. 68, 1–11.
- Buonanno, A., and Y. Chen, 2001, “Quantum Noise in Second Generation, Signal-Recycled Interferometric Gravitational-Wave Detectors,” Phys. Rev. D 64, 042006.
- Buonanno, A., and Y. Chen, 2003, “Scaling Law in Signal-Recycled Laser-Interferometer GravitationalWave Detectors,” Phys. Rev. D 67, 062002.
- Buonanno, A., and T. Damour, 1999, “Eòective OneBody Approach to General Relativistic Two-Body Dynamics,” Phys. Rev. D 59, 084006.
- Campanelli, M., C. O. Lousto, P. Marronetti, and Y. Zlochower, 2006, “Accurate Evolutions of Orbiting Black-Hole Binaries Without Excision,” Phys. Rev. Lett. 96, 111101.
- Caves, C. M., 1981, “Quantum-Mechanical Noise in an Interferom- eter,” Phys. Rev. D 23, 1693–1708.
- Clark, J. P. A., Van den Heuvel, E. P. J., and W. Sutantyo, 1979, Astron. Astrophys. 72, 120.
- Creighton, T., 2008, “Tumbleweeds and Airborne Gravitational Noise Sources for LIGO,” Classical Quantum Gravity 25, 125011.
- Cutler, C., et al., 1993, “he Last hree Minutes: Issues in Gravitational Wave Measurements of Coalescing Compact Bina- ries,” Phys. Rev. Lett. 70, 2984–2987.
- Cutler, C., and K. S. horne, 2002,“An Overview of Gravitational Wave Sources,” General Relativity and Gravitation, Proceedings of the 16th International Conference, edited by N. Bishop and S. D. Maharaj (World Scientiûc, Singapore), pp. 72–111.
- Danilishin, S. L., and F. Ya. Khalili, 2012, “Quantum measurement theory in gravitational-wave detectors,” Living Rev. Relativity 15, 5.
- Detweiler, S. L., 1979, “Pulsar Timing Measurements and the Search for Gravitational Waves,” Astrophys. J. 234, 1100–1104.
- Drasco, S, 2016, “Binary Black Hole Inspiral at Natural Speed,” https://www.youtube.com/watch?v=1VJU50dFhfc.
- Epstein, R., and J. P. A. Clark, 1979, “Discussion Session II: Notes and Summary,” in Sources of Gravitational Radiation, edited by Larry Smarr (Cambridge University Press, Cambridge, England), pp. 477–497.
- Faller, J. E. and P. L. Bender, 1984, “A Possible Laser Gravitational Wave Antenna in Space,” in Precision Measurements and Fundamental Constants II, edited by B. N. Taylor, and W. D. Phillips, NBS Spec. Publ. Vol. 617, pp. 689–690.
- Faller, J. E., et al., 1985,“Space Antenna for Gravitational Wave Astronomy,” Proceedings of the Colloquium on Kilometric Optical Arrays in Space, ESA SP-226, pp. 157–163.
- Flanagan, E. E., and S. A. Hughes, 1998,“Measuring Gravitational Waves from Binary Black Hole Coalescences: I. Signal to Noise for Inspiral, Merger, and Ringdown,” Phys. Rev. D 57, 4535–4565.
- Flanagan, E. E. and K. S. Thorne, 1995, “Light Scattering and Baøe Conûguration for LIGO,” LIGO Technical Report No. LIGO-T950101-00- R [https://dcc.ligo.org/DocDB/0028/T950101/000/ T950101-00.pdf].
- Gertsenshtein, M. E., and V. I. Pustovoit, 1963, “On the Detection of Low-Frequency Gravitational Waves,” Sov. Phys. JETP 16, 433–435.
- Giddings, S. B., 2016, “Gravitational Wave Tests of Quantum Modiûcations to Black Hole Structure—with Post-GW150914 Update,” Classical Quantum Gravity 33, 235010.
- Hahn, S. G., and R. W. Lindquist, 1964, “he Two-Body Problem in Geometrodynamics,” Ann. Phys. (N.Y.) 29, 304–331.
- Hinderer, I., et al., 2014, “Error-analysis and Comparison to Analytical Models of Numerical Waveforms Produced by the NRAR Collaboration,” Classical Quantum Gravity 31, 025012.
- Hughes, S. A. and K. S.Thorne, 1998, “Seismic Gravity Gradient Noise in Interferometric Gravitational Wave Detectors,” Phys. Rev. D 58, 122002.
- Kamionkowski, M., A. Kosowsky, and A. Stebbins, 1997, “A Probe of Primordial Gravity Waves and Vorticity,” Phys. Rev. Lett. 78, 2058–2061.
- Kimble, H. J., et al., 2002, “Conversion of Conventional Gravitational-Wave Interferometersinto QND Interferometers by Modifying their Input and/or Output Optics,” Phys. Rev. D 65, 022002.
- Levin, Y., 1998, “Internal hermal Noise for LIGO Test Masses: A Direct Approach,” Phys. Rev. D 57, 659.
- LIGO/Virgo, 2010, “Predictions for the Rates of Compact Binary Coalescences by Ground-Based Gravitational-Wave Detectors,” Classical Quantum Gravity 27, 173001.
- LIGO/Virgo, 2016, “Tests of General Relativity with GW150914,” Phys. Rev. Lett. 116, 221101.
- Maggiore, M, 2018, Gravitational Waves, Volume 2: Astrophysics and Cosmology (Oxford University Press, Oxford).
- Misner, C. W., 1960, “Wormhole Initial Conditions,” Phys. Rev. 118, 1110–1111.
- Misner, C. W., K. S.horne, and J. A. Wheeler, 1973, Gravitation (W. H. Freeman, San Francisco).
- Owen, R., et al., 2011, “Frame-Dragging Vortexes and Tidal Tendexes Attached to Colliding Black Holes: Visualizing the Curvature of Spacetime,” Phys. Rev. Lett. 106, 151101.
- Phinney, S, et al., 2004, “he Big Bang Observer: Direct Detection of Gravitational Waves from the Birth of the Universe to the Present,” NASA Mission Concept Study.
- Press, W. H., and K. S. horne, 1972, “Gravitational Wave Astronomy,” Annu. Rev. Astron. Astrophys. 10, 335–374. Pretorius, F., 2005, “Evolution of Binary Black-Hole Spacetimes,” Phys. Rev. Lett. 95, 121101.
- Ryan, F. D, 1995, “Gravitational Waves from the Inspiral of a Compact Object into a Massive, Axisymmetric Body with Arbitrary Multipole Moments,” Phys. Rev. D 52, 5707.
- Sazhin, M. V., 1978, “Opportunities for Detecting Ultralong Gravitational Waves,” Sov. Astron. 22, 36–38.
- Schutz, B. F., 1986, “Determining the Hubble Constant from Gravitational Wave Observations,” Nature (London) 323, 310.
- Schutz, B. F., 1989, Ed., “Gravitational Wave Data Analysis,” Proceedings of the NATO Advanced Research Workshop held at St. Nicholas, Cardiò, Wales, July 6–9, 1987 (Kluwer, Dordrecht).
- Seljak, U, and M. Zaldarriaga, 1997, “Signature of Gravity Waves in the Polarization of the Microwave Background,” Phys. Rev. Lett. 78, 2054–2058.
- Smarr, L., 1979, Ed., “Gauge Conditions, Radiation Formulae and the Two Black Hole Collision,” in Sources of Gravitational Waves (Cambridge University Press, Cambridge, England), pp. 245–274.
- Thorne, K. S., and R. D. Blandford, 2017, Modern Classical Physics (Princeton University Press, Princeton, NJ).
- Thorne, K. S. and C. J. Winstein, 1999, “Human Gravity Gradient Noise in Interferometric Gravitational Wave Detectors,” Phys. Rev. D 60, 082001.
- Thorne, K. S., et al., 2001, “The Scientific Case for Advanced LIGO Interferometers,” LIGO Technical Report LIGO-P000024- A-R, Caltech/MIT, January, https://dcc.ligo.org/LIGO-P000024/public.
- Unruh, W. G., 1982, “Quantum Noise in the Interferometer Detector,” in Quantum Optics, Experimental Gravity, and Quantum Measurement heory, edited by P. Meystre and M. O. Scully (Plenum, New York), pp. 647–660.
- Vogt, R. E., R. W. P. Drever, F. J. Raab, K. S. Thorne, and R. Weiss, 1989, Proposal to the National Science Foundation for the Construction, Operation, and Supporting Research and Development of a Laser Interferometer Gravitational-Wave Observatory (California Institute of Technology), https://dcc.ligo.org/ LIGO-M890001/public.
- Weiss, R., 1972, “Electromagnetically Coupled Broadband Gravita- tional Antenna,” Quarterly Progress Report No. 105, MIT Research Laboratory of Electronics, pp. 54–76.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f87bb8e-389a-4791-aafc-3a4797fa41d7