PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On applications of computer algebra systems in queueing theory calculations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, the most important aspects of computer algebra systems applications in complicated calculations for classical queueing theory models and their novel modifications are discussed. We mainly present huge computational possibilities of Mathematica environment and effective methods of obtaining symbolic results connected with the most important performance characteristics of queueing systems. First of all, we investigate effective solutions to computational problems appearing in queueing theory such as: finding final probabilities for Markov chains with a huge number of states, calculating derivatives of complicated rational functions of one or many variables with the use of classical and generalized L’Hospital’s rules, obtaining exact formulae of Stieltjes convolutions, calculating chosen integral transforms used often in the above-mentioned theory and possible applications of generalized density function of random variables and vectors in these computations. Some exemplary calculations for practical models belonging both to classical models and their generalizations are attached as well.
Rocznik
Strony
art. no. e150199
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Institute of Information Technology, Warsaw University of Life Sciences – SGGW, Poland
Bibliografia
  • [1] P.P. Bocharov, C. D’Apice, A.V. Pechinkin, and S. Salerno, Queueing Theory. Utrecht-Boston: VSP, 2004.
  • [2] V. Naumov, K. Samuilov, and A. Samuilov, “On the total amount of resources occupied by serviced customers,” Autom. Remote Control, vol. 77, pp. 1419–1427, 2016.
  • [3] K. Kerobyan, R. Covington, R. Kerobyan, and K. Enakoutsa, “An infinite-server queueing 𝑀𝑀𝐴𝑃𝑘/𝐺𝑘/∞ model in semi-Markov random environment subject to catastrophes,” in Communications in Computer and Information Science, A. Dudin et al., Eds. Cham: Springer International Publishing, 2018, pp. 195–212.
  • [4] E. Lisovskaya, S. Moiseeva, and M. Pagano, “Multiclass 𝐺𝐼/𝐺𝐼/∞ queueing systems with random resource requirements,” in Communications in Computer and Information Science, A. Dudin et al., Eds. Cham: Springer International Publishing, 2018, pp. 129–142.
  • [5] O. Tikhonenko, M. Ziółkowski, and M. Kurkowski, “M/G/n/(0,V) Erlang queueing system with non-homogeneous customers, non-identical servers and limited memory space,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 489–500, 2019.
  • [6] O. Tikhonenko, Computer Systems Probability Analysis, Warsaw: Akademicka Oficyna Wydawnicza EXIT, 2006, (in Polish).
  • [7] O. Tikhonenko, M. Ziółkowski, and W.M. Kempa, “Queueing systems with random volume customers and a sectorized unlimited memory buffer,” Int. J. Appl. Math. Comput. Sci., vol. 31, no. 3, pp. 471–486, 2021.
  • [8] M. Ziółkowski and O. Tikhonenko, “Single-server queueing system with limited queue, random volume customers and unlimited sectorized memory buffer,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143647, 2022.
  • [9] H.-K. Kim, “System and method for processing multimedia packets for a network,” 26 June 2007, US Patent No. 7,236,481, patents.google.com/patent/US7236481B2/en.
  • [10] X. Chen, A. Stidwell, and M. Harris, “Radio telecommunications apparatus and method for communications internet data packets containing different types of data,” 2009, US Patent No. 7,558,240, patents.google.com/patent/US7558240B2/en.
  • [11] M.L. Abell and J.P. Braselton, The Mathematica Handbook, Elsevier, 1992.
  • [12] A.K. Erlang, “Solution of some problems in the theory of probabilities of significance in automatic telephone exchanges,” Post Office Electr. Eng. J., vol. 10, pp. 189–197, 1917.
  • [13] F. Pollaczek, “Über eine Aufgabe der Wahrscheinlichkeitstheorie,” Math. Z., vol. 32, pp. 64–100, 1930.
  • [14] A.Y. Khintchine, “Mathematical theory of stationary queues,” Matem. Sbornik, vol. 39, no. 4, pp. 73–84, 1932, (in Russian).
  • [15] S.F. Yashkov, “Processor-sharing queues: Some progress in analysis,” Queueing Syst., vol. 2, no. 1, pp. 1–17, 1987.
  • [16] T.T. Lee, “𝑀/𝐺/1/𝑁 queue with vacation time and exhaustive service discipline,” Oper. Res., vol. 32, no. 4, pp. 774–784, 1984.
  • [17] B.T. Doshi, “Queueing systems with vacations-a survey,” Queueing Syst., vol. 1, pp. 29–66, 1986.
  • [18] M. Schwarz, Computer-communication Network Design and Analysis, New York: Prentice-Hall, Englewood Cliffs, 1977.
  • [19] M. Schwarz, Telecommunication Networks: Protocols, Modeling and Analysis, New York: Addison-Wesley Publishing Company, 1987.
  • [20] A.M. Alexandrov and B.A. Kaz, “Non-homogeneous demands flows service,” Izv. AN SSSR. Tekhnicheskaya Kibernetika, vol. 4, pp. 47–53, 1973, (In Russian).
  • [21] B. Sengupta, “The spatial requirements of an 𝑀/𝐺/1 queue, or: How to design for buffer space,” in Modelling and Performance Evaluation Methodology. Lecture Notes in Control and Information Science, F. Baccelli and G. Fayolle, Eds. Heidelberg: Springer International Publishing, 1984, pp. 547–562.
  • [22] M. Ziółkowski, “Multi-server loss queueing system with random volume customers, non–identical servers and a limited sectorized memory buffer,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 5, no. 71, p. e146764, 2023.
  • [23] M. Ziółkowski, “Some practical applications of generating functions and Laplace–Stieltjes transforms,” Scientific Issues. Jan Długosz University in Cze¸stochowa. Mathematics, vol. 17, pp. 97–110, 2012.
  • [24] M. Ziółkowski, “Generalization of probability density of random variables,” Scientific Issues. Jan Długosz University in Częstochowa. Mathematics, vol. 14, pp. 163–172, 2009.
  • [25] J. Sztrik, Basic Queueing Theory, University of Debrecen, Faculty of Informatics, 2012.
  • [26] V. Ivlev, “Indeterminate forms of many variables functions. part I,” Educ. Math., vol. 23, no. 4, pp. 90–100, 2002, (in Russian).
  • [27] V. Ivlev, “Indeterminate forms of many variables functions. part II,” Educ. Math., vol. 26, no. 3, pp. 77–85, 2003, (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f7f1b68-b4e9-4d59-8d8a-cc5d151f5e4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.