PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustical studies on molecular interaction of 1,3,4-pyrazoline derivatives using ultrasonic technique at 303.15 K

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The acoustical parameters for the binary liquid mixtures containing Pyrazoline derivatives in DMF have been estimated at 303.15 K, from the measured values of ultrasonic velocity (U), density (ρ) and viscosity (η). From these data some of acoustical parameters such as adiabatic compressibility (β), free length (Lf), acoustic impedance (Z), Rao’s constant (R), molar compressibility (W), relaxation time (τ), free volume (Vf) and internal pressure (πi), etc., have been computed using the standard relations. The results have been discussed in terms of molecular interactions.
Rocznik
Strony
100--115
Opis fizyczny
Bibliogr. 32 poz., rys., wykr., wz.
Twórcy
  • Department of Chemistry, Government Arts College, Chidambaram - 608201, Tamil Nadu, India
Bibliografia
  • [1] Ali A., Nain A. K., Indian J Phys. 74B (2000) 63.
  • [2] Kannappan V., Jaya Santhi R., J Acous Soc Ind. 29 (2001) 192.
  • [3] Rastogi M., Awasthi A., Gupta M., Shukla J. P., Indian J Pure Appl Phys. 40 (2002) 256.
  • [4] Nain A. K., Phys Chem Liq. 45 (2007) 371.
  • [5] Pal A., Das G., J. Pure & Applied Ultrasonic 21 (1990) 9.
  • [6] Tabhane V. A., Patki B. A., Indian J. Pure & Applied Physics 23 (1985) 58.
  • [7] Bhandakkar V. D., Adv. Applied Sci. Res 2(3) (2011) 198-207.
  • [8] George J., Sastry N. V., Patel S. R., Valand M. K., J. Chem. Eng. 47 (2002) 262.
  • [9] Bhandakkar V. D., Tabhane V. A., Ghosh S., Indian J. Pure & Applied Physics 41 (2003) 849-854.
  • [10] S. Prakash, J. Singh, S. Srivastava, Acoustica 65 (1988) 263.
  • [11] C. Chemarayappa, K. Ramababu, P. Venkateswaralu, G. K. Raman, Acoustics Lett. 15 (1991) 83.
  • [12] C. Padrnasree, K. Ravindraprasad, Indian J. Pure Appl. Phys. 32 (1994) 954.
  • [13] Nain AK, et al., Journal of Fluid Phase Equilibria 265(1-2) (2008) 46-56.
  • [14] Bhoj Bhadur Gurung, Mahendra Nath Roy, Journal of Solution Chemistry 35 (2006) 1587-1606.
  • [15] Zareena Begaum, et al., Journal of Molecular Liquids 178 (2013) 99-112
  • [16] Thanuja B, Charles Kanagam, et al., Journal of Ultrasonics Sonochemistry 18 (2011) 1274-1278.
  • [17] Manohar Murthi, N. Nagbhushnam, Indian J Chem. 23 (1984) 510.
  • [18] Khasare S. B., Indian J Pure & Appl Phys. 25 (1987) 182.
  • [19] Rajgopal K., Chenthilnath S., Journal of Chemical Engineering 18 (2010) 806-816.
  • [20] Anil Kumar Nain, Journal of Fluid Phase Equilibria 259(2) (20070 218-227.
  • [21] Shahla Parveen, Divya Shukla, et al., Journal of Applied Acoustics 70(3) (2009) 507-513.
  • [22] Rajgopal K, Chenthilnath S., Journal of Molecular Liquids 160(2) (2011) 72-80.
  • [23] Eyring H., Kincaid J. F., J. Chem. Phys. 6 (1938) 620-629.
  • [24] Padma S., There., Rasayan J. Chem 6(2) (2013) 111.
  • [25] Fort R. J., More W. H., Trans. Faraday Soc. 61 (1965) 2102.
  • [26] Baluja S., Oza S., Fluid Phase Equil bria 20 (20 2) 1 .
  • [27] Oswal S. L., Patel I. N., Fluid Phase Equil bria, 149 (1998)
  • [28] Shashikant et al., Journal of Chemical and Pharmaceutical Research 4(8) (2012) 33791.
  • [29] J. L. Hunter, D. Dossa, J. Haus, J. Chem. Phys. 60 (1974) 4605.
  • [30] Govindarajan S., Venu Kanapan, Naresh M. D., Venkatabopathy K., Lokanadam B., J. Mol. Liqs. 107(1-3) (2003) 289-316. International Research Journal of Pure & Aplied Chemistry 4(2) (2014) 213-226.
  • [31] Ali A, Abida Hyder S, Nain AK., Indian J Phy. 76B(15) (2002).
  • [32] Jayakumar S., et al., J. Acoust. Soc., Ind. 30 (2002) 84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f7eb917-3685-46b6-afd9-2a3cf66cd0af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.