Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Nieorganiczne hydraty soli jako materiały zmiennofazowe (PCM) do magazynowania energii cieplnej w instalacjach słonecznych
Języki publikacji
Abstrakty
The authors present a general idea of using inorganic salt hydrates in solar installations. A key role in this selection is played by thermophysical parameters, so the authors review their test methods and in turn characterize them for the most promising salt hydrates. Next, the authors describe the advantages and disadvantages of inorganic salt hydrates and indicate possibilities for their improvement. The use of salt hydrate converters in PV installations significantly improves the efficiency of photovoltaic modules. We show that at least 18 salt hydrates are promising for solar applications with the best ones being Sodium Hydrogen Phosphate Dodecahydrate, Sodium Carbonate Decahydrate and Calcium Chloride Hexahydrate. The selection of a test method for determining the thermophysical parameters of salt hydrates should be individual depending on the research objective. Comparing the methods presented, we believe that it is the DSC and DTA methods that provide the most accurate and repeatable results.
Autorzy przedstawiają ogólną koncepcję wykorzystania nieorganicznych hydratów solnych w instalacjach solarnych. Kluczową rolę w tym doborze odgrywają parametry termofizyczne, dlatego autorzy dokonują przeglądu metod ich badania i kolejno charakteryzują je dla najbardziej obiecujących hydratów solnych i ich mieszanin. Następnie autorzy opisują zalety i wady nieorganicznych hydratów solnych oraz wskazują możliwości ich udoskonalenia. Zastosowanie konwerterów hydratów solnych w instalacjach PV znacząco poprawia sprawność modułów fotowoltaicznych. Wykazano, że co najmniej 18 hydratów soli i ich mieszanin jest obiecujących dla zastosowań solarnych ze względu na korzystne parametry termofizyczne, przy czym najlepsze z nich to dodekahydrat wodorofosforan sodu, dekahydrat węglanu sodu i heksadydrat chlorku wapnia. Z przeglądu literatury wynika, że wybór metody badawczej do określenia parametrów termofizycznych hydratów soli powinien być indywidualny w zależności od celu badań. Porównując przedstawione metody, stwierdzono, że to właśnie metody DSC i DTA dają najbardziej dokładne i powtarzalne wyniki.
Czasopismo
Rocznik
Tom
Strony
161--172
Opis fizyczny
Bibliogr. 53 poz., fot., rys., tab.
Twórcy
autor
- Kielce University of Technology, Poland
autor
- Kielce University of Technology, Poland
autor
- Kielce University of Technology, Poland
autor
- AGH University of Science and Technology, Poland
Bibliografia
- [1] Singh G.K.: Solar power generation by PV (photovoltaic) technology: A review, Energy 2013, 53, pp. 1-13.
- [2] Cabeza L.F., Castell A., Barreneche C.D., de Gracia, A., Fernández A.: Materials used as pcm in thermal energy storage in buildings: a review, Renew. Sustain. Energy rev. 2011, 15, pp. 1675-1695.
- [3] Li T.X., Wu D.L., He F., Wang R.Z.: Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage, Int. J. Heat mass transf. 2017, 115, pp. 148-157.
- [4] Kenisarin M., Mahkamov K.: Salt hydrates as latent heat storage materials: thermophysical properties and costs. Sol. Energy Mater. Sol. Cells 2016, pp. 145, 255-286.
- [5] Zhang P., Xiao X., Ma Z.: A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement, Appl. Energy 2016, 165, pp. 472-510.
- [6] Raj B., Van de Voorde M., Mahajan Y.: Phase change nanomaterials for thermal energy storage. In nanotechnology for energy sustainability, 2017, pp. 459-484.
- [7] Wang T., Wang S., Luo R., Zhu C., Akiyama T., Zhang Z.: Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl. Energy 2016, 171, pp.113-119.
- [8] Giro-Paloma J., Martínez M., Cabeza L.F., Fernández A.I.: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew. Sustain. Energy Rev. 2016, 53, pp. 1059-1075.
- [9] Choo Y.M., Wei W.: Salt hydrates as phase change materials for photovoltaics thermal management. Energy Science & Engineering, 2021, 10, pp. 1630-1645.
- [10] Hasan A., McCormack S.J., Huang M.J., Norton B.: Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics, Solar Energy, 2010, 84, pp. 1601-1612.
- [11] Taqi Al.-Najjar H.M., Mahdi J.M.: Novel mathematical modeling, performance analysis, and design charts for the typical hybrid photovoltaic/phase-change material (PV/PCM) system, Applied Energy, 2022, 315, 119027.
- [12] Zielenkiewicz W.: Calorimetry, Inst. of Phys. Chem. of Polish Acad. of Sciences. 2005.
- [13] Shelby J.E.: Thermal analysis of Glasses. Chapter 12 in Introduction to Glass Science and Technology. The Royal Society of chemistry. 2005.
- [14] Pielichowiska K., Pielichowski K.: Różnicowa kalorymetria skaningowa z modulacja temperatury (MT-DSC), Laboratorium, 2007, 7-8, pp. 36-38.
- [15] Hasan A., McCormack S.J., Huang M.J., Norton B.: Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method. Energy Conversion and Management, 2014, 81, pp. 322-329.
- [16] Sole A., Miro L., Barreneche C., Martorell I., Cabeza L.F.: Review of the T-history method to determine thermophysical properties of phase change materials (PCM), Renew. Sustain. Energy Rev. 2013, 26, pp. 425-436.
- [17] Domańska U.: Thermophysical properties and thermodynamic phase behavior of ionic liquids, Thermochim. Acta 2006, 448, pp. 19-30.
- [18] Wróbel S., Marzec M.: Różnicowa kalorymetria skaningowa, Zakład Inżynierii Materiałów, s. 44.
- [19] Yinping Z., Yi J., Yi J.: A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 1999, 10, 201.
- [20] Yinping, Z., Yi J.: A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-change materials; Meas Sci. Technol, 10 (3) (1999).
- [21] Hong H., Kim S.K., Kim Y.S.: Accuracy improvement of T-history method for measuring heat of fusion of various materials. Int J Refrig, 2004, 27 (4), pp. 360-366.
- [22] Marín J.M., Zalba B., Cabeza L.F., Mehling H.: Determination of enthalpy-temperature curves of phase change materials with the temperature-history method: improvement to temperature dependent properties; Meas Sci. Technol, 2003, 14 (2), pp. 184-189.
- [23] Xie N., Huang Z., Luo Z., Gao X., Fang Y., Zhang Z.: Inorganic salt hydrate for thermal energy storage, Appl. Sci. 2017, 7, 1317.
- [24] Rezvanpour M., Borooghani D., Torabi F., Pazoki M.: Using CaCl2·6H 2O as a phase change material for thermoregulation and enhancing photovoltaic panels’ conversion efficiency: Experimental study and TRNSYS validation. Renewable Energy, 2020, 146, pp. 1907-1921.
- [25] Ushak S., Gutierrez A., Galleguillos H., Fernandez A.G., Cabeza L.F., Grageda M.: Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Solar Energy Materials and Solar Cells, 2015, 132, pp. 385-391.
- [26] Melcer A., Klugmann-Radziemska E., Lewandowski W.M.: Materiały zmiennofazowe. Właściwości, klasyfikacja, zalety i wady. Przem. Chem., 2012 7, pp. 1000-1011.
- [27] Zwolińska M., Bogdan A.: Związki zmiennofazowe w zastosowaniach techniczno-użytkowych i ergonomicznych. Ergonomia, 2012, 4, pp. 22-25.
- [28] Hussain S.I., Dinesh R., Roseline A.: Enhanced thermal performance and study the influence of sub cooling on activated carbon dispersed eutectic PCM for cold storage applications. Energy Build. 2017, 143, pp. 17-24.
- [29] Pielichowska K., Pielichowski K.: Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, pp. 67-123.
- [30] Khan Z., Khan Z., Ghafoor A.: A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers. Manag. 2016, 115, pp. 132-158.
- [31] Lorente S., Bejan A., Niu J.L.: Construal design of latent thermal energy storage with vertical spiral heaters. Int. J. Heat Mass Transf. 2015, 81, pp. 283-288.
- [32] Li G., Zhang B., Li X., Zhou Y., Sun Q., Yun Q.: The preparation, characterization and modification of a new phase change material: CaCl2·6H2O-MgCl2·6H2O eutectic hydrate salt. Sol. Energy Mater. Sol. Cells 2014, 126, pp. 51-55.
- [33] Liu Y., Yang Y.: Preparation and thermal properties od Na2CO3 10H2O Na2HPO4 12H2O eutectic hydrate salt as a novel phase change material for energy storage. Applied Thermal Engineering 2006, 10, pp. 606-609.
- [34] Xin W., Fang J. Jiang W., Ping L., Na L., Yanhan F., Wang L.: Preparation and modification of novel phase change material Na2SO4 10H2O Na2HPO4 12H2O binary eutectic hydrate salt. Energy Sources, Part A:Recovery, Utilization and Environmental Effects, 2019, pp. 1-12.
- [35] Mohamed S.A., Al-Sulaiman F.A., Ibrahim N.I., Zahir M.H., Al-Ahmed A., Saidur R., Yılbaş B.S., Sahin A.Z.: A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew. Sustain. Energy Rev. 2017, 70, pp. 1072-1089.
- [36] Dannemand M., Johansen J.B., Furbo S.: Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Sol. Energy Mater. Sol. Cells 2016, 145, pp. 287-295.
- [37] Shin H.K., Park M., Kim H.-Y., Park S.-J.: Thermal property and latent heat energy storage behavior of sodium acetate trihydrate composites containing expanded graphite and carboxymethyl cellulose for phase change materials. Appl. Therm. Eng. 2015, 75, pp. 978-983.
- [38] Li Y., Yu S., Chen P., Rojas R., Hajian A., Berglund L.: Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy 2017, 34, pp. 541-548.
- [39] Hu X. Huang Z., Yu X., Li B.: Preparation and thermal energy storage of carboxymethyl cellulose-modified nanocapsules. BioEnergy Res. 2013, 6, pp. 1135-1141.
- [40] Jin X., Medina M.A., Zhang X., Zhang S.: Phase-change characteristic analysis of partially melted sodium acetate trihydrate using DSC. Int. J. Thermophys. 2014, 35, pp. 45-52.
- [41] Gutierrez A., Ushak S., Galleguillos H., Fernandez A., Cabeza L.F., Grágeda M.: Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material. Appl. Energy 2015, 154, pp. 616-621.
- [42] Kazemi Z., Mortazavi S.M.: A new method of application of hydrated salts on textiles to achieve thermoregulating properties, Thermochim. Acta 2014, 589, pp. 56-62.
- [43] Duan Z.-J., Zhang H.-Z., Sun L.-X., Cao Z., Xu F., Zou Y.-J., Chu H.-L., Qiu S.-J., Xiang C.-L., Zhou H.-Y.: CaCl2·6H2O/expanded graphite composite as form-stable phase change materials for thermal energy storage, J. Therm. Anal. Calorim. 2013, 115, pp. 111-117.
- [44] Xu B., Li Z.: Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage. Appl. Energy 2013, 105, pp. 229-237.
- [45] Lasfargues M., Bell A., Ding Y.: In Situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications, J. Nanopart. Res. 2016, 18, pp. 1-11.
- [46] Tiagi V., Kaushik S.C.: Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, pp. 1373-1391.
- [47] Huang J., Wang T., Zhu P., Xiao J.: Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim. Acta 2013, 557, pp. 1-6.
- [48] Korhammer K., Druske M.-M., Fopah-Lele A., Rammelberg H.U., Wegscheider N., Opel O., Osterland T., Ruck W.: Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage, Appl. Energy 2016, 162, pp. 1462-1472.
- [49] Huang Z., Luo Z., Gao X., Fang X., Fang Y., Zhang Z.: Investigations on the thermal stability, long-term reliability of LiNO3/KCl - Expanded graphite composite as industrial waste heat storage material and its corrosion properties with metals. Appl. Energy 2017, 188, pp. 521-528.
- [50] Cheng F., Wen R., Huang Z., Fang M., Liu Y.G., Wu X., Min X.: Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage, Appl. Therm. Eng. 2017, 120, pp. 107-114.
- [51] Xu T., Li Y., Chen J., Liu J.: Preparation and thermal energy storage properties of lino 3-kcl-nano 3/expanded graphite composite phase change material, Sol. Energy Mater. Sol. Cells 2017, 169, pp. 215-221.
- [52] Huang X., Alva G., Liu L., Fang G.: Preparation, characterization and thermal properties of fatty acideutectics/bentonite/expanded graphite composites as novel form–stable thermal energy storage materials, Sol. Energy Mater. Sol. Cells 2017, 166, pp. 157-166.
- [53] Cui W., Zhang H., Xia Y., Zou Y., Xiang C., Chu H., Qiu S., Xu F., Sun L.: Preparation and thermophysical properties of a novel form-stable CaCl2·6H2O/sepiolite composite phase change material for latent heat storage, J. Therm. Anal. Calorim. 2017, 20, pp. 1-7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f7b0922-5467-406e-a416-f5d45d914004