PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of Portevin–Le Châtelier bands on tensile and plane strain tensile tests

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to show that it is possible to create an experimental database to better model Portevin–Le Châtelier (PLC) phenomenon with two kinds of solicitation. Indeed, two kinds of specimen are tested: conventional tensile specimens and specimens designed for plane strain tensile test. In order to better understand this phenomenon and above all to put away any geometry effect, two materials are tested: one without PLC bands (AU4G) that is used as reference and AlMg3 which is well known for its PLC bands. The image correlation tool is used to analyse the creation and the spread of PLC bands. Characteristic parameters of the bands are then measured: width, angle, transported strain, strain rate, and velocity. The originality of this paper is first to show that PLC bands are present during plane strain tensile test and then to characterize the bands thanks to image correlation. These experimental databases could be very useful for those who develop models on PLC phenomenon.
Rocznik
Strony
94--102
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
autor
  • Université Cheikh Anta Diop, Ecole Supérieure Polytechnique, BP 5085, Dakar-Fann, Sénégal
  • Universite Savoie Mont Blanc, SYMME, FR-74000 Annecy, France
autor
  • Universite Savoie Mont Blanc, SYMME, FR-74000 Annecy, France
  • Faculté de Technologie, Université de M'sila, Algeria
Bibliografia
  • [1] K. Darowicki, J. Orlikowski, A. Zieliński, Frequency bands selection of the Portevin–Le Châtelier effect, Computational Materials Science 43 (2) (2008) 366–373.
  • [2] F.B. Klose, F. Hagemann, P. Hähner, H. Neuhäuser, Investigation of the Portevin–Le Châtelier effect in Al–3 wt. Mg alloys by strain-rate and stress-rate controlled tensile tests, Materials Science and Engineering A 387–389 (2004) 93–97.
  • [3] P. Maj, J. Zdunek, J. Mizera, K.J. Kurzydlowski, The effect of a notch on the Portevin–Le Chatelier phenomena in an Al–3Mg model alloy, Materials Characterization 96 (2014) 46–53.
  • [4] M. Jobba, R.K. Mishra, M. Niewczas, Flow stress and work- hardening behaviour of Al–Mg binary alloys, International Journal of Plasticity 65 (2015) 43–60.
  • [5] R. Sarmah, G. Ananthakrishna, Correlation between band propagation property and the nature of serrations in the Portevin–Le Chatelier effect, Acta Materialia 91 (2015) 192– 201.
  • [6] J. Coër, P.Y. Manach, H. Laurent, M.C. Oliveira, L.F. Menezes, Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg alloy in simple shear, Mechanics Research Communications 48 (2013) 1–7.
  • [7] Z. Kovács, J. Lendvai, G. Vörös, Localized deformation bands in Portevin–Le Châtelier plastic instabilities at a constant stress rate, Materials Science and Engineering A 279 (29) (2000) 179–184.
  • [8] W. Ozgowicz, B. Grzegorczyk, A. Pawełek, W. Wajda, W. Skuza, A. Piątkowski, Z. Ranachowski, An analysis of the Portevin–Le Chatelier effect and cracking of CuSn6P alloy at elevated temperature of deformation applying the acoustic emission method, Engineering Fracture Mechanics (2016), ISSN 0013-7944.
  • [9] M. Mazière, H. Dierke, Investigations on the Portevin Le Chatelier critical strain in an aluminum alloy, Computational Materials Science 52 (1) (2012) 68–72.
  • [10] F.B. Klose, A. Ziegenbein, J. Weidenmüller, H. Neuhäuser, P. Hähner, Portevin–Le Chatelier effect in strain and stress controlled tensile tests, Computational Materials Science 26 (2003) 80–86.
  • [11] R. Onodera, T. Morikawa, K. Higashida, Computer simulation of Portevin–Le Chatelier effect based on strain softening model, Materials Science and Engineering A 234–236 (1997) 533–536.
  • [12] Z. Kovács, L. Lendvai, G. Vörös, Localized deformation bands in Portevin–Le Châtelier plastic instabilities at a constant stress rate, Materials Science and Engineering A 279 (1–2) (1997) 179–184.
  • [13] B. Jaroslav, The onset of Portevin–Le Chatelier instabilities in tensile testing, Materials Science and Engineering A 316 (1–2) (2001) 102–108.
  • [14] L. Casarotto, H. Dierke, R. Tutsch, H. Neuhäuser, On nucleation and propagation of PLC bands in an Al–3Mg alloy, Materials Science and Engineering A 527 (1–2) (2009) 132–140.
  • [15] R. Schneider, R.J. Grant, B. Heine, R. Börret, S. Burger, Z. Zouaoui, An analysis of the surface quality of AA5182 at different testing temperatures, Materials & Design 64 (2014) 750–754.
  • [16] S. Graff, S. Forest, J.L. Strudel, C. Prioul, P. Pilvin, J.L. Béchade, Strain localization phenomena associated with static and dynamic strain ageing in notched specimens: experiments and finite element simulations, Materials Science and Engineering A 387–389 (2004) 181–185.
  • [17] S. Graff, S. Forest, J.L. Strudel, C. Prioul, P. Pilvin, J.L. Béchade, Finite element simulations of dynamic strain ageing effects at V-notches and crack tips, Scripta Materialia 52 (11) (2005) 1181–1186.
  • [18] H.D. Wang, C. Berdin, M. Mazière, S. Forest, C. Prioul, A. Parrot, P. Le-Delliou, Experimental and numerical study of dynamic strain ageing and its relation to ductile fracture of a C–Mn steel, Materials Science and Engineering A 547 (2012) 19–31.
  • [19] Q. Hu, Q. Zhang, P. Cao, S. Fu, Thermal analyses and simulations of the type A and type B Portevin–Le Chatelier effects in an Al–Mg alloy, Acta Materialia 60 (4) (2012) 1647– 1657.
  • [20] H. Wang, C. Berdin, M. Mazière, S. Forest, C.A. Prioul, P. Parrot, P. Le-Delliou, Portevin–Le Chatelier (PLC) instabilities and slant fracture in C–Mn steel round tensile specimens, Scripta Materialia 64 (5) (2011) 430–433.
  • [21] N.A. Sène, P. Balland, R. Arrieux, Determination and validation of micro-forming limit diagram of very thin materials, International Journal of Material Forming (6) (2013) 41–48.
  • [22] N.A. Sène, P. Balland, R. Arrieux, K. Bouabdallah, An experimental study of the micro-formability of very thin materials, Experimental Mechanics 53 (2) (2013) 155–162.
  • [23] P. Balland, L. Tabourot, P. Vacher, K. Bouabdallah, Caractérisation des bandes Portevin–Le Châtelier dans un alliage Al-Mg par la technique d'analyse d'images, in: 7ème colloque International francophone, méthodes et Techniques Optiques pour l'Industrie, Mulhouse, France, 2006.
  • [24] K. Bouabdallah, P. Balland, A. Manari, Impact of the shape of the sample on the PLC instabilities – contribution of digital image correlation technics on tensile tests, in: 30th Danubia- Adria, Primosten, Croatia, 2013.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f7660e0-fb94-4288-a00f-79215d55859c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.