PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness analysis of a binary ORC power plant with zeotropic organic fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A review of the available literature shows that analyses of organic Rankine cycle systems with a zeotropic mixture working medium practically concern single-circuit systems. In these works, it has been shown that the standing of zeotropic mixtures in organic Rankine cycle systems makes it possible to achieve higher power and efficiency compared to organic Rankine cycle systems with pure fluids. In this article, the authors present an analysis of the efficiency of a two-circuit organic Rankine cycle (binary) power plant with a zeotropic mixture in the upper cycle of this power plant. The proposed binary power plant system uses a zeotropic mixture circulating medium in the upper organic Rankine cycle circuit, while the lower circuit uses a homogeneous low-boiling medium. The results of this analysis showed that with properly selected parameters of the binary power plant system, i.e. with appropriate selection of the pressure during the evaporation transformation in the upper and lower circuits, the power obtained in it is higher than for a single-circuit power plant in the same temperature range (for the same heat source and the same condensing temperature). The increase in the power of the binary power plant system was achieved by using the heat contained in the water stream to preheat the medium in the bottom circuit. For example, for the binary organic Rankine cycle power plant with R413A refrigerant in the upper circuit, the generated power is 17.8 kWe, which is 20% higher than for a single-circuit power plant (for the reference power plant, the power is 14.8 kWe).
Rocznik
Strony
129--138
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Avenue, Szczecin
  • West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Avenue, Szczecin
Bibliografia
  • [1] Taner, T. (2021). The novel and innovative design with using H2 fuel of PEM fuel cell: Efficiency of thermodynamic analyze. Fuel, 302, 121109. doi: 10.1016/j.fuel.2021.121109
  • [2] Taner, T. (2017). The micro-scale modeling by experimental study in PEM fuel cell. Journal of Thermal Engineering, (3)6, 331755. doi: 10.18186/journal-of-thermal-engineering.331755
  • [3] Stachel, A.A., & Wiśniewski, S. (2015). Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant. Archives of Thermodynamics, 36(1), 111–123. doi:10.1515/aoter-2015-0008
  • [4] EU. (2024). Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases, amending Directive (EU) 2019/1937 and repealing Regulation (EU) no 517/2014. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A32024R0573 [accessed 29 April 2024].
  • [5] Landelle, A., Tauveron, N., Haberschill, P., Revellin, R., & Colasson, S. (2017). Organic Rankine cycle design and performance comparison based on experimental database. Applied Energy, 204, 1172–1187. doi: 10.1016/j.apenergy.2017.04.012
  • [6] Su, W., Zhao, L., & Deng, S. (2017). Developing a performance evaluation model of Organic Rankine Cycle for working fluids based on the group contribution method. Energy Conversion and Management, 132, 307–315. doi: 10.1016/j.enconman.2016.11.040
  • [7] Su, W., Zhao, L., & Deng, S. (2017). Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model. Applied Energy, 202, 618–627. doi: 10.1016/j.apenergy.2017.03.133
  • [8] Brown, J.S., Brignoli, R., & Daubman, S. (2014). Methodology for estimating thermodynamic parameters and performance of working fluids for organic Rankine cycles. Energy, 73, 818–828.doi: 10.1016/j.energy.2014.06.088
  • [9] Modi, A., & Haglind, F. (2017). A review of recent research on the use of zeo-tropic mixtures in power generation systems. Energy Converssion and Management, 138, 603–626. doi: 10.1016/j.enconman.2017.02.032
  • [10] Bamorovat Abadi, G., & Kim, K.C. (2017). Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues. Renewable and Sustainable Energy Reviews, 73C, 1000–1013. doi: 10.1016/j.rser.2017.02.020
  • [11] Wu, W., Zhao, L., & Ho, T. (2012). Experimental investigation on pinch points and maximum temperature differences in a horizontal tube-in-tube evaporator using zeotropic refrigerants. Energy Conversion and Management, 56, 22–31. doi: 10.1016/j.enconman.2011.11.009
  • [12] Chys, M., Van Den Broek, M., Vanslambrouck, B., & Paepe, D. (2012). Potential of zeotropic mixtures as working fluids in organic Rankine cycles. Energy, 44(1), 623–632. doi: 10.1016/j.energy.2012.05.030
  • [13] Lecompte, S., Ameel, B., Ziviani, D., van den Broek, M., & De Paepe, M. (2014). Exergy analysis of zeotropic mixtures as working fluids in Organic Rankine Cycles. Energy Conversion and Management, 85, 727–739. doi: 10.1016/j.enconman.2014.02.028
  • [14] Habka, M., & Ajib, S. (2015). Evaluation of mixtures performances in Organic Rankine Cycle when utilizing the geothermal water with and without cogeneration. Applied Energy, 154, 567−576. doi: 10.1016/j.apenergy.2015.05.046
  • [15] Ochoa, G.V., Caballero, A.P., & Castilla, D.V. (2023). Assessing sustainable operational conditions of a bottoming organic Rankine cycle using zeotropic mixtures: An energy-emergy approach, Heliyon, 9(1). doi: 10.1016/j.heliyon.2022.e12521
  • [16] Zheng, Z., Cao, J., Wu, W., & Leung, M.K.H. (2022). Parallel and in-series arrangements of zeotropic dual-pressure Organic Rankine Cycle (ORC) for low-grade waste heat recovery. Energy Reports, 8, 2630–2645. doi: 10.1016/j.egyr.2022.01.057
  • [17] Blondel, Q., Tauveron, N., Lhermet, G., & Caney, N. (2023). Zeotropic mixtures study in plate heat exchangers and ORC systems. Applied Thermal Engineering, 219, 119418. doi: 10.1016/j.applthermaleng.2022.119418
  • [18] Xia, X., Sun, T., Wang, Z., Zhang, H., Yang, C., & Wang, K. (2023). Thermodynamic, economic and environmental assessment of a novel organic Rankine cycle-vapor compression refrigeration system using zeotropic mixture. Energy and Buildings,301(3). doi: 10.1016/j.enbuild.2023.113736
  • [19] Xu, W., Zhao, R., Deng, S., Zhao, L., & Mao, S.S. (2021). Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data. Renewable and Sustainable Energy Reviews, 148, 111267. doi: 10.1016/j.rser.2021.111267
  • [20] Szargut, J. (2007). Exergy. Calculation and application guide. Wydawnictwo Politechniki Śląskiej. Gliwice (in Polish).
  • [21] Szargut, J. (2009). Technical thermodynamics. PWN. Kraków (in Polish).
  • [22] Nowak, W., Borsukiewicz-Gozdur, A., & Wiśniewski, S. (2012). Influence of working fluid evaporation temperature in the nearcritical point region on the effectiveness of ORC Power plant operations. Archives of Thermodynamics, 33(3), 77–88. doi:10.2478/v10173-012-0019-7
  • [23] Lewandowski, W.M., Ryms, M., Kołoła, R., Kubski, P., Klugmann-Radziemska, E., & Ostrowski, P. (2010). Improving the efficiency of ORC systems and trigeneration systems by using various thermo-dynamic variants of their operation. Nafta-Gaz, 9, 794–799 (in Polish).
  • [24] Bańkowski, M., & Borsukiewicz-Gozdur, A. (2017). Analysis of selected thermodynamic parameters of zeotropic substances in terms of their use as working fluids in ORC systems, In Współczesne problemy energetyki IV (pp. 217−228). Politechnika Śląska, Gliwice (in Polish).
  • [25] Borsukiewicz-Gozdur, A., Wiśniewski, S., Mocarski, S., & Bańkowski, M. (2014). ORC power plant for electricity production from forest and agriculture biomass. Energy Conversion and Management, 87, 1180–1185. doi: 10.1016/j.enconman.2014.04.098
  • [26] Nowak, W., Borsukiewicz-Gozdur, A., & Wiśniewski, S. (2012). Influence of working fluid evaporation temperature in the nearcritical point region on the effectiveness of ORC power plant operation. Archives of Thermodynamics, 33(3), 73–83. doi: 10.2478/v10173-012-0019-7
  • [27] Lemmon, E., Huber, M., & McLinden, M. (2010). NIST Standard Reference Database 23, Version 9.0, 2010, Reference Fluid Therodynamic and Transport Properties (9.0), Gaithersburg
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f756066-43d5-4829-81b8-000054e591b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.