Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, unit-speed the Legendre curves are studied in Sasakian 3-manifold. Firstly, differential equations characterizing the Legendre curves are obtained and the method used for the approximate solution is explained. Then, the approximate solution is found for one of the characterizations of the Legendre curve with the Legendre matrix collocation method. In addition, a sample application is made to make the method more understandable. And finally, with the help of these equations and the approximate solution, the geometric properties of this curve type are examined.
Słowa kluczowe
Rocznik
Tom
Strony
205--219
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Faculty of education Bayburt University, Bayburt, Turkey
autor
- Department of Mathematics, Celal Bayar University, Manisa, Turkey
autor
- Department of Mathematics, Celal Bayar University, Manisa, Turkey
Bibliografia
- [1] Baikoussis, C., Blair, D.E., On Legendre curves in contact 3-manifolds, Geometriae Dedicata, 49, 1994, 135-142.
- [2] Balestro, V., Martini, H., Teixeira, R., On Legendre curves in normed planes. Pacific Journal of Mathematics, 297, 2017, 1-27.
- [3] Bejancu, A., Duggal, K.L., Real hypersurfaces of indefinite Kaehler manifolds, International Journal of Mathematics and Mathematical Sciences, 16, 1993, 545-556.
- [4] Belkalfa, M., Hırica, I.E., Rosca, R., Verstraelen, L., On Legendre curves in Riemannian and Lorentzian Sasaki spaces. Soochow Journal of Mathematics, 28, 2002, 81-91.
- [5] Blair, D.E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. Springer Verlag, 1976.
- [6] Camcı, Ç., Curves Theory in Contact Geometry, PhD thesis, Ankara University, 2007.
- [7] Cho, J.T., Inoguchi, J.-I., Lee, J.-E., On Slant Curves in Sasakian 3-Manifolds. Bulletin of the Australian Mathematical Society, 74, 2006, 359-367.
- [8] Çetin, M., Kocayiğit, H., Sezer, M., Lucas collocation method to determination spherical curves in Euclidean 3-space, Communication in Mathematical Modeling and Applications, 3, 2018, 44-58.
- [9] Isik, O.R., Sezer, M., Guney, Z., Bernstein series solution of linear second-order partial differential equations with mixed conditions, Mathematical Methods in the Applied Sciences, 37, 5, 2014, 609-619.
- [10] Kocayiğit, H., Hacısalihoğlu, H.H., Biharmonic Curves in Contact Geometry, Communications Faculty of Sciences University of Ankara Series, 61, 2, 2012, 35-43.
- [11] Sezer, M., Karamete, A., Gülsu, M., Taylor Polynomial solutions of systems of linear differential equations with variable coefficients, International Journal of Computer Mathematics, 82, 6, 2005, 755-764.
- [12] Sezer, M., Gülsu, M., Solving high-order linear differential equations by a Legendre matrix method based on hybrid Legendre and Taylor polynomials, Numerical Methods for Partial Differential Equations, 26, 3, 2010, 647-661.
- [13] Srivastava, K., Sood, K., Srivastava, S.K., Characterization of Legendre curves in quasi-Sasakian pseudo-metric 3-manifolds, arXiv: General Mathematics, 2019.
- [14] Yano, K., Kon, M. Structures on manifolds, Series in pure mathematics, 3, 1984.
- [15] Yıldırım, A., Tubular surface around a Legendre curve in BCV spaces, New Trends in Mathematical Sciences, 4, 2, 2016, 61-71.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f72ef0f-12e2-4a1d-bc28-f867eb8d4337