PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generative modelling of vibration signals in machine maintenance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exponential development of technologies for the acquisition, collection, and processing of data from real-world objects is creating new perspectives in the field of machine maintenance. The Industrial Internet of Things is the source of a huge collection of measurement data. The performance of classification or regression algorithms needs to take into account the random nature of the process being modelled and any incomplete observability, especially in terms of failure states. The article highlights the practical possibilities of using generative artificial intelligence and deep machine learning systems to create synthetic measurement observations in monitoring the vibrations of rotating machinery to improve unbalanced databases. Variational Autoencoder VAE generative models with latent variables in the form of high-level input features of time-frequency spectra were studied. The mapping and generation algorithm was optimised and its effectiveness was tested in the practical solution of the task of diagnosing the three operating states of a demonstration gearbox.
Rocznik
Strony
art. no. 173488
Opis fizyczny
Bibliogr. 31 poz., tys., wykr.
Twórcy
  • University of Technology and Humanities in Radom, Poland
  • University of Technology and Humanities in Radom, Poland
Bibliografia
  • 1. Booyse W, Wilke DN, Heyns S. Deep digital twins for detection, diagnostics and prognostics. Mech Syst Signal Process. 2020 Jun;140:106612. https://doi.org/10.1016/j.ymssp.2019.106612
  • 2. Borucka A, Niewczas A, Hasilova K. Forecasting the readiness of special vehicles using the semi-Markov model. Eksploat i Niezawodn. 2019 Dec 31;21(4):662–9. https://doi.org/10.17531/ein.2019.4.16
  • 3. Foster D. Generative deep learning : Teaching Machines to Paint, Write, Compose, and Play. O’Reilly Media Inc.; 2019. 330 p. https://books.google.com/books/about/Generative_Deep_Learning.html?hl=de&id=RqegDwAAQBAJ
  • 4. Gatopoulos I, Tomczak JM. Self-supervised variational auto-encoders. Entropy. 2021 Jun 14;23(6):747. https://doi.org/10.3390/e23060747
  • 5. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. http://www.deeplearningbook.org
  • 6. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. Commun ACM. 2020 Jun 10;63(11):139–44. https://doi.org/10.1145/3422622
  • 7. Goodfellow I. NIPS 2016 Tutorial: Generative Adversarial Networks. 2016 Dec 31; https://doi.org/10.48550/arXiv.1701.00160
  • 8. Jang K, Hong S, Kim M, Na J, Moon I. Adversarial Autoencoder Based Feature Learning for Fault Detection in Industrial Processes. IEEE Trans Ind Informatics. 2022 Feb;18(2):827–34. https://doi.org/10.1109/TII.2021.3078414
  • 9. Kingma DP, Rezende DJ, Mohamed S, Welling M. Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems. 2014. p. 3581–9. https://arxiv.org/pdf/1406.5298v1.pdf
  • 10. Kingma DP, Welling M. An introduction to variational autoencoders. Vol. 12, Foundations and Trends in Machine Learning. 2019.p. 307–92. https://doi.org/10.1561/2200000056
  • 11. Kingma DP, Welling M. Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014 -Conference Track Proceedings. 2014. https://doi.org/10.48550/arXiv.1312.6114
  • 12. Kingma DP. Fast Gradient-Based Inference with Continuous Latent Variable Models in Auxiliary Form. 2013 Jun 4. https://doi.org/10.48550/arXiv.1306.0733
  • 13. Lee S, Kwak M, Tsui KL, Kim SB. Process monitoring using variational autoencoder for high-dimensional nonlinear processes. Eng Appl Artif Intell. 2019 Aug;83:13–27. https://doi.org/10.1016/j.engappai.2019.04.013
  • 14. McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth summer research project on artificial intelligence. AI Mag. 2006;27(4):12–4 https://doi.org/10.1609/aimag.v27i4.1904
  • 15. Michnej M, Młynarski S, Pilch R, Sikora W, Smolnik M, Drożyner P. Physical and reliability aspects of high-pressure ammonia water pipelinefailures. Eksploatacja i Niezawodnosc –Maintenanceand Reliability 2022; 24 (4): 728–737, http://doi.org/10.17531/ein.2022.4.13
  • 16. Portnoff MR. Time-Frequency Representation of Digital Signals and Systems Based on Short-time Fourier Analysis. IEEE Trans Acoust. 1980 Feb;28(1):55–69. https://doi.org/10.1109/TASSP.1980.1163359
  • 17. Puchalski A, Komorska I, Ślęzak M, Niewczas A. Synthesis of naturalistic vehicle driving cycles using the markov chain monte carlo method. Eksploat i Niezawodn. 2020 Jun 30;22(2):316–22. https://doi.org/10.17531/ein.2020.2.14
  • 18. Razghandi M, Zhou H, Erol-Kantarci M, Turgut D. Variational Autoencoder Generative Adversarial Network for Synthetic Data Generation in Smart Home. In: IEEE International Conference on Communications. 2022. p. 4781–6.
  • 19. Regenwetter L, Nobari AH, Ahmed F. Deep Generative Models in Engineering Design: A Review. Vol. 144, Journal of Mechanical Design, Transactions of the ASME. 2022. https://doi.org/10.1115/1.4053859
  • 20. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for training GANs. In: Advances in Neural Information Processing Systems. 2016. p. 2234–42. https://doi.org/10.48550/arXiv.1606.03498
  • 21. Shannon BC, Tollman SG. A neuropsychological examination of multiple sclerosis and its impact upon higher mental functions. South African J Psychol. 1994;24(3):152–62. https://doi.org/10.1177/008124639402400307
  • 22. Shannon CE. A Mathematical Theory of Communication. Bell Syst Tech J. 1948 Jul;27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • 23. Świderski A, Borucka A, Grzelak M, Gil L. Evaluation of Machinery Readiness Using Semi-Markov Processes. Appl Sci. 2020 Feb 24;10(4):1541. https://doi.org/10.3390/app10041541
  • 24. Taye MM. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions.Vol. 11, Computation. 2023. p. 52. https://doi.org/10.3390/computation11030052
  • 25. Tipping ME, Bishop CM. Probabilistic Principal Component Analysis. J R Stat Soc Ser B Stat Methodol. 1999 Sep 1;61(3):611–22. https://doi.org/10.1111/1467-9868.00196
  • 26. Tomczak JM, Welling M. Improving Variational Auto-Encoders using Householder Flow. 2016 Nov 29; https://doi.org/10.48550/arXiv.1611.09630
  • 27. Tomczak JM. Deep Generative Modeling. Deep Generative Modeling. Cham: Springer International Publishing; 2022. 1–197 p. https://doi.org/10.1007/978-3-030-93158-2
  • 28. Wei R, Mahmood A. Recent Advances in Variational Autoencoders with Representation Learning for Biomedical Informatics: A Survey. IEEE Access. 2021;9:4939–56. https://doi.org/10.1109/ACCESS.2020.3048309
  • 29. Witten E. A mini-introduction to information theory. Vol. 43, Rivista del Nuovo Cimento. 2020. p. 187–227. https://doi.org/10.1007/s40766-020-00004-5
  • 30. Zhang T, Feng H, Chen Z, Wang C, Huang Y, Tang Y, et al. An Interactive Insight Identification and Annotation Framework for Power Grid Pixel Maps using DenseU-Hierarchical VAE. 2019 May 22. https://doi.org/10.48550/arXiv.1905.12164
  • 31. Zhu J, Jiang M, Liu Z. Fault detection and diagnosis in industrial processes with variational autoencoder: A comprehensive study. Sensors. 2022 Dec 29;22(1):227. https://doi.org/10.3390/s22010227
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f72391b-b98b-4c1c-b9b9-4c3fb3006685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.