Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We have supplemented the Particle-In-Cell code SMILEI with the module for collisions between charged and neutral particles. The code has been evaluated and used for the examination of the nonlinear stability and dynamics of plasma in conditions of Transient Luminous Events. The linear kinetic dissipative filamentation instability of current-carrying weakly-ionized plasma, identified in J. Błecki and K. Mizerski [Archives of Mechanics, 70, 535–550, 2018], was simulated. This instability did not occur in our simulations due to an early onset of nonlinear effects. This means that the time scales of the development of nonlinear effects are much shorter than the time scale of the linear dissipative instability.
Czasopismo
Rocznik
Tom
Strony
563--578
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Space Research Centre, Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw, Poland
- Cardinal Stefan Wyszynski University, Dewajtis 5, 01-815 Warsaw, Poland
autor
- Space Research Centre, Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw, Poland
- Space Research Centre, Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw, Poland
autor
- Department of Magnetism, Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64, 01-452 Warsaw, Poland
Bibliografia
- 1. E.A. Gerken, U.S. Inan, C.P. Barrington-Leigh, Telescopic imaging of sprites, Geophysical Research Letters, 27, 2637–2640, 2000.
- 2. E.S. Weibel, Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution, Physical Review Letters, 2, 83–84, 1959.
- 3. B.D. Fried, Mechanism for instability of transverse plasma waves, Physics of Fluids, 2, 337, 1959.
- 4. U. Ebert, C. Montijn, T. Briels, W. Hundsdorfer, B. Meulenbroek, A. Rocco, E.M. van Veldhuizen, The multiscale nature of streamers, Plasma Sources Science and Technology, 15, S118–S129, 2006.
- 5. J. Błecki, K. Mizerski, Subtle structure of streamers under conditions resembling those of Transient Luminous Events, Archives of Mechanics, 70, 6, 535–550, 2018.
- 6. P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Physical Review, 94, 511–525, 1954.
- 7. A.R. Niknam, B. Shokri, Nonlinear filamentation of a current-carrying plasma, Physics of Plasmas, 15, 012108, 2008.
- 8. A.R. Niknam, B. Shokri, Nonlinear dynamics of the filamentation of the resistive instability of a current-carrying plasma, Journal of Plasma Physics, 74, 319–326, 2008.
- 9. A.R. Niknam, P.S. Mostafavi, D. Komaizi, M. Salahshoor, Simulation of filamentation instability of a current-carrying plasma by particle in cell method, Physics of Plasmas, 19, 082119, 2012.
- 10. S.M. Khorashadizadeh, E. Rastbood, A.R. Niknam, Kinetic theory of the filamentation instability in a collisional current-driven plasma with nonextensive distribution, Physics of Plasmas, 22, 072103, 2015.
- 11. B. Shokri, T. Vazifehshenas, Thermal motion effect on the filamentation of a strongly collisional current-driven plasma, Physics of Plasmas, 8, 788–790, 2001.
- 12. J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai, J. Dargent, C. Riconda, M. Grech, SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation, Computer Physics Communications, 222, 351–373, 2018.
- 13. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze, Principles of Plasma Electrodynamics, Springer, Berlin, 1984.
- 14. C.L. Kuo, R.R. Hsu, A.B. Chen, H.T. Su, L.C. Lee, S.B. Mende, H.U. Frey, H. Fukunishi, Y. Takahashi, Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophysical Research Letters, 32, L19103, 2005.
- 15. J. Morrill, E. Bucsela, C. Siefring, M. Heavner, S. Berg, D. Moudry, S. Slinker, R. Fernsler, E. Wescott, D. Sentman, D. Osborne, Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions, Geophysical Research Letters, 29, 1462, 2002.
- 16. D.D. Sentman, H.C. Stenbaek-Nielsen, M.G. McHarg, J.S. Morrill, Plasma chemistry of sprite streamers, Journal of Geophysical Research: Atmospheres, 113, D11112, 2008, doi: 10.1029/2007JD008941.
- 17. Y. Itikawa, Cross sections for electron collisions with nitrogen molecules, Journal of Physical and Chemical Reference Data, 35, 31–53, 2006.
- 18. N.G. Lehtinen, Physics and mathematics of electric streamers, Radiophysics and Quantum Electronics, 64, 11–25, 2021.
- 19. A. Okhrimovskyy, A. Bogaerts, R. Gijbels, Electron anisotropic scattering in gases: A formula for Monte Carlo simulations, Physical Review E, 65, 037402, 2002.
- 20. V. Vahedi, M. Surendra, A Monte Carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges, Computer Physics Communications, 87, 179–198, 1995.
- 21. Y.P. Raizer, Gas Discharge Physics, J.E. Allen [ed.], Springer, Berlin, 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0f71da37-58e4-4cc2-a8f7-34d86c8411b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.